908 resultados para dorsal striatum
Resumo:
The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.
Resumo:
To assess the long-term outcome and adverse events of selective dorsal rhizotomy (SDR) in children with spastic cerebral palsy (CP).
Resumo:
BACKGROUND: Although visuospatial deficits have been linked with freezing of gait (FOG) in Parkinson's disease (PD), the specific effects of dorsal and ventral visual pathway dysfunction on FOG is not well understood. METHOD: We assessed visuospatial function in FOG using an angle discrimination test (dorsal visual pathway bias) and overlapping figure test (ventral visual pathway bias), and recorded overall response time, mean fixation duration and dwell time. Covariate analysis was conducted controlling for disease duration, motor severity, contrast sensitivity and attention with Bonferroni adjustments for multiple comparisons. RESULTS: Twenty seven people with FOG, 27 people without FOG and 24 controls were assessed. Average fixation duration during angle discrimination distinguished freezing status: [F (1, 43) = 4.77 p < 0.05] (1-way ANCOVA). CONCLUSION: Results indicate a preferential dysfunction of dorsal occipito-parietal pathways in FOG, independent of disease severity, attentional deficit, and contrast sensitivity.
Resumo:
Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7 ± 2.7% and 55.0 ± 3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9 ± 1.9% to 33.5 ± 0.7% (p<0.01) and the total Nedd4-2 protein to 44% ± 0.13% of its basal level (p<0.01, n=4 animals in each group, mean ± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.
Resumo:
Selective dorsal rhizotomy at the lumbar level is a neurosurgical procedure, which reduces spasticity in the legs. Its effect has mainly been studied in children with spastic cerebral palsy. Little is known about the outcome of selective dorsal rhizotomy in patients with neurodegenerative disorders. We report the clinical course after selective dorsal rhizotomy in 2 patients with progressive spasticity. Leg spasticity was effectively and persistently reduced in both patients, facilitating care and improving sitting comfort. However, spasticity of the arms and other motor disturbances, such as spontaneous extension spasms and the ataxia, increased gradually in time. Selective dorsal rhizotomy leads to a disappearance of leg spasticity in patients with a neurodegenerative disease. Other motor signs are not influenced and may increase due to the progressive nature of the underlying disease.
Resumo:
This study investigates the results of a technique using an extensor carpi radialis longus (ECRL) tenodesis for symptomatic scapholunate instability. Symptomatic scapholunate instability has been corrected so far either by limited wrist fusion or by various techniques of soft tissue repair. Limited wrist fusion greatly reduces wrist motion and increases the probability of osteoarthritis in the remaining mobile wrist segments. On the other hand, most types of soft tissue repair are technically difficult to perform and have disappointing results due to the inherent laxity. The presented dynamic approach was used in 20 wrists of 19 patients with static scapholunate instability. Preoperative evaluation included in all patients clinical examination, radiologic evaluation, and arthroscopy for establishing the diagnosis of static scapholunate instability. The technique involves the fixation of the ECRL tendon on the dorsal aspect of the scaphoid by means of a cancellous screw and a special washer. Dynamic ECRL tenodesis of the scaphoid is a safe and simple procedure that enhances the extension forces on the scaphoid in all wrist positions. The results of this preliminary report in 20 wrists showed dynamic ECRL tenodesis to be an effective treatment option for treating symptomatic static scapholunate instability.
Resumo:
Hemispheric lateralization is well known in the cerebral cortex, but not in subcortical structures like basal ganglia. The goal of our study was to determine whether lateralization was present in the direct and indirect striatal pathways. We studied gene expression in the striatum of healthy rats, which was divided into two sectors, medial and lateral. Dynorphin (DYN) and enkephalin (ENK) mRNA were analyzed as markers of the direct and indirect striatal pathways, respectively and glutamic acid decarboxylase (GAD) mRNA was analyzed as a marker of all medium spiny neurons. DYN and GAD mRNA expression was higher on the left hemisphere in the medial sector of the striatum, but not in the lateral one. We did not observe any difference between sides with ENK mRNA expression. We suggest the presence of a lateralization in the medial striatum, which is specific for the direct striatal pathway.
Resumo:
Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.
Resumo:
The adenosine A2a receptors (A2aR) play an important role in the purinergic mediated neuromodulation. The presence of A2aR in the brain is well established. In contrast, little is known about their expression in the periphery. The purpose of this study was to investigate the expression of A2aR gene in the autonomic (otic, sphenopalatine, ciliary, cervical superior ganglia and carotid body) and in the dorsal root ganglia of normal rat. Hybridization histochemistry with S35-labelled radioactive oligonucleotide probes was used. An expression of A2aR gene was found in the large neuronal cells of the rat dorsal root ganglia. The satellite cells showed no expression of A2aR gene. In the superior cervical ganglion, isolated ganglion cells expressed A2aR. In the carotid body clusters of cells with a strong A2aR gene expression were found. In contrast, the ciliary and otic ganglia did not expressed A2aR gene, and only few small sized A2aR expressing cells were demonstrated in the sphenopalatine ganglion. The discrete distribution of A2aR gene expression in the peripheral nervous system speaks for a role of this receptor in the purinergic modulation of sensory information as well as in the sympathetic nervous system.
Resumo:
INTRODUCTION: Substantial heterogeneity remains across studies investigating changes in gray matter in schizophrenia. Differences in methodology, heterogeneous symptom patterns and symptom trajectories may contribute to inconsistent findings. To address this problem, we recently proposed to group patients by symptom dimensions, which map on the language, the limbic and the motor systems. The aim of the present study was to investigate whether patients with prevalent symptoms of emotional dysregulation would show structural neuronal abnormalities in the limbic system. METHOD: 43 right-handed medicated patients with schizophrenia were assessed with the Bern Psychopathology Scale (BPS). The patients and a control group of 34 healthy individuals underwent structural imaging at a 3T MRI scanner. Whole brain voxel-based morphometry (VBM) was compared between patient subgroups with different severity of emotional dysregulation. Group comparisons (comparison between patients with severe emotional dysregulation, patients with mild emotional dysregulation, patients with no emotional dysregulation and healthy controls) were performed using a one way ANOVA and ANCOVA respectively. RESULTS: Patients with severe emotional dysregulation had significantly decreased gray matter density in a large cluster including the right ventral striatum and the head of the caudate compared to patients without emotional dysregulation. Comparing patients with severe emotional dysregulation and healthy controls, several clusters of significant decreased GM density were detected in patients, including the right ventral striatum, head of the caudate, left hippocampus, bilateral thalamus, dorsolateral prefrontal and orbitofrontal cortex. The significant effect in the ventral striatum was lost when patients with and without emotional dysregulation were pooled and compared with controls. DISCUSSION: Decreased gray matter density in a large cluster including the right ventral striatum was associated with severe symptoms of emotional dysregulation in patients with schizophrenia. The ventral striatum is an important part of the limbic system, and was indicated to be involved in the generation of incentive salience and psychotic symptoms. Only patients with severe emotional dysregulation had decreased gray matter in several brain structures associated with emotion and reward processing compared to healthy controls. The results support the hypothesis that grouping patients according to specific clinical symptoms matched to the limbic system allows identifying patient subgroups with structural abnormalities in the limbic network.
Resumo:
BACKGROUND Often ignored, hands are one of the most telltale signs of aging. This prospective study was initiated to evaluate the effect of subcutaneous hyaluronic acid (HA) injections in aging hands, with special attention to complications and long-term outcomes. METHODS Between January 2010 and December 2010, a total of 38 patients with skin phototypes II-IV and between 58 and 76 years old were treated with HA injection for aging hands. The quantity of injection never exceeded 1.0-1.5 ml HA per hand. A clinical follow-up was performed at 2 weeks, 4 weeks, 3 months, and 6 months after injection. Complications were reviewed for the whole series. At the first follow-up, 2 weeks after the procedure, ultrasound was carried out to determine if additional filling material was required. At each follow-up, patients were asked to fill out a satisfaction questionnaire. RESULTS Nine patients developed slight ecchymosis that disappeared after 1 week. No other complications were seen in the series. Pain during the injection and discomfort after the procedure were minimal. At the 2-week follow-up, after ultrasound control, nine patients received a complementary injection. At each follow-up, overall patient satisfaction was high and was validated by clearance of rhytids, veins, bony prominences, and dermal and subcutaneous atrophy. CONCLUSION Skin revitalization with injectable HA can improve the clinical appearance of the back of the hands. However, this therapy requires knowledge of the possible complications and their remediation as well as knowledge and respect of injected doses. Moreover, despite excellent results at each follow-up, the results of our series are not as good after 6 months, and a longer follow-up would be needed to determine if this procedure provides long-lasting benefit. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Resumo:
AIM Information regarding the selection procedure for selective dorsal rhizotomy (SDR) in children with spastic cerebral palsy (CP) is scarce. Therefore, the aim of this study was to summarize the selection criteria for SDR in children with spastic CP. METHOD A systematic review was carried out using the following databases: MEDLINE, CINAHL, EMBASE, PEDro, and the Cochrane Library. Additional studies were identified in the reference lists. Search terms included 'selective dorsal rhizotomy', 'functional posterior rhizotomy', 'selective posterior rhizotomy', and 'cerebral palsy'. Studies were selected if they studied mainly children (<18y of age) with spastic CP, if they had an intervention of SDR, if they had a detailed description of the selection criteria, and if they were in English. The levels of evidence, conduct of studies, and selection criteria for SDR were scored. RESULTS Fifty-two studies were included. Selection criteria were reported in 16 International Classification of Functioning, Disability and Health model domains including 'body structure and function' (details concerning spasticity [94%], other movement abnormalities [62%], and strength [54%]), 'activity' (gross motor function [27%]), and 'personal and environmental factors' (age [44%], diagnosis [50%], motivation [31%], previous surgery [21%], and follow-up therapy [31%]). Most selection criteria were not based on standardized measurements. INTERPRETATION Selection criteria for SDR vary considerably. Future studies should describe clearly the selection procedure. International meetings of experts should develop more uniform consensus guidelines, which could form the basis for selecting candidates for SDR.