937 resultados para discrete orthogonal polynomials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general approach is presented for implementing discrete transforms as a set of first-order or second-order recursive digital filters. Clenshaw's recurrence formulae are used to formulate the second-order filters. The resulting structure is suitable for efficient implementation of discrete transforms in VLSI or FPGA circuits. The general approach is applied to the discrete Legendre transform as an illustration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V -structures in the predictor sub-graph, we are also able to prove that this family of polynomials does indeed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"C00-1469-0154."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel surrogate model is proposed in lieu of computational fluid dynamic (CFD) code for fast nonlinear aerodynamic modeling. First, a nonlinear function is identified on selected interpolation points defined by discrete empirical interpolation method (DEIM). The flow field is then reconstructed by a least square approximation of flow modes extracted by proper orthogonal decomposition (POD). The proposed model is applied in the prediction of limit cycle oscillation for a plunge/pitch airfoil and a delta wing with linear structural model, results are validate against a time accurate CFD-FEM code. The results show the model is able to replicate the aerodynamic forces and flow fields with sufficient accuracy while requiring a fraction of CFD cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose an orthogonal chirp division multiplexing (OCDM) technique for coherent optical communication. OCDM is the principle of orthogonally multiplexing a group of linear chirped waveforms for high-speed data communication, achieving the maximum spectral efficiency (SE) for chirp spread spectrum, in a similar way as the orthogonal frequency division multiplexing (OFDM) does for frequency division multiplexing. In the coherent optical (CO)-OCDM, Fresnel transform formulates the synthesis of the orthogonal chirps; discrete Fresnel transform (DFnT) realizes the CO-OCDM in the digital domain. As both the Fresnel and Fourier transforms are trigonometric transforms, the CO-OCDM can be easily integrated into the existing CO-OFDM systems. Analyses and numerical results are provided to investigate the transmission of CO-OCDM signals over optical fibers. Moreover, experiments of 36-Gbit/s CO-OCDM signal are carried out to validate the feasibility and confirm the analyses. It is shown that the CO-OCDM can effectively compensate the dispersion and is more resilient to fading and noise impairment than OFDM.