847 resultados para copper welding
Resumo:
The objective of the master’s thesis is to define the warranty practices and costs in the welding machines manufacturing company and do a proposal for a warranty policy based on the practices and costs. The study include a disquisition of the warranty practices in the subsidiaries and distributor sales. The disquisition of the warranty practices introduces the information relates to warranty period, warranty costs, including repair, spare part and other costs, the practices with the replaced parts, the utilization rate of the eWarranty system and information relates to special arrangements in the warranties. The warranty costs are defined besides the group level also separately per regions and product families. From some product families the disquisition is done per products. In this study is also done a proposal for a warranty policy for the company. The proposal speaks out the length of warranty period, the compensation of the warranty costs, the practices with replaced parts and usage of eWarranty system.
Resumo:
X-This work shows an alternative method to copper determination by X-Ray Fluorescence (XRF). Since copper concentration in natural waters is not enough to reach XRF detection limit, a liquid-solid preconcentration procedure was proposed. Glycerin was used to complex the metal increasing its adsorption on activated charcoal. The solid phase was used to XRF determination. Several parameters were evaluated, such as, the complexation pH, the charcoal adsorption limit and the glycerin concentration. The interferences are lead and bismuth and the sensitivities decreased in the order Cu2+, Bi3+ and Pb2+. The advantages of the method are its simplicity, low cost and low spectral interference.
Resumo:
When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II) chelates. Anhydrous copper(II) complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II) and cadmium(II) hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.
Resumo:
This work reports the synthesis and characterization of adducts of general formula MCl2.ngly, where M= Mn and Cu; n= 2 and 4, and gly= glycine. The manganese adducts were synthesized by dissolution of both, manganese chloride and glycine in water, whereas the copper adducts were obtained by using an alternative solid state synthesis approach. For all adducts, the obtained infrared data shows that the coordination involves the amine nitrogen atom, as well as an oxygen atom of the COO- group. The TG curves for the synthesized adducts exhibit only one mass loss step associated with the release of glycine molecules.
Resumo:
The possibility and the usefulness of applying plasma keyhole welding to structural steels with different compositions and material thicknesses, and in various welding positions has been examinated. Single pass butt welding with I groove in flat, horizontal vertical and vertical positions and root welding with V , Y and U grooves of thick plate material in flat position have been studied and the welds with high quality has been obtained. The technological conditions for successful welding are presented. The single and interactive effects of welding parameters on weld quality, especially on surface weld defects, geometrical form errors, internal defects and mechanical properties (strength, ductility, impact toughness, hardness and bendability) of weld joint, are presented. Welding parameter combinations providing the best quality welds are also presented.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.
Resumo:
A novel unsymmetric dinucleating ligand (LN3N4) combining a tridentate and a tetradentate binding sites linked through a m-xylyl spacer was synthesized as ligand scaffold for preparing homo- and dimetallic complexes, where the two metal ions are bound in two different coordination environments. Site-selective binding of different metal ions is demonstrated. LN3N4 is able to discriminate between CuI and a complementary metal (M′ = CuI, ZnII, FeII, CuII, or GaIII) so that pure heterodimetallic complexes with a general formula [CuIM′(LN3N4)]n+ are synthesized. Reaction of the dicopper(I) complex [CuI 2(LN3N4)]2+ with O2 leads to the formation of two different copper-dioxygen (Cu2O2) intermolecular species (O and TP) between two copper atoms located in the same site from different complex molecules. Taking advantage of this feature, reaction of the heterodimetallic complexes [CuM′(LN3N4)]n+ with O2 at low temperature is used as a tool to determine the final position of the CuI center in the system because only one of the two Cu2O2 species is formed
Resumo:
A simple cloud point extraction procedure is presented for the preconcentration of copper in various samples. After complexation by 4-hydroxy-2-mercapto-6-propylpyrimidine (PTU), copper ions are quantitatively extracted into the phase rich in Triton X-114 after centrifugation. Methanol acidified with 0.5 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). Analytical parameters including concentrations for PTU, Triton X-114 and HNO3, bath temperature, centrifugation rate and time were optimized. The influences of the matrix ions on the recoveries of copper ions were investigated. The detection limits (3SDb/m, n=4) of 1.6 ng mL-1 along with enrichment factors of 30 for Cu were achieved. The proposed procedure was applied to the analysis of environmental samples.
Resumo:
The productivity, quality and cost efficiency of welding work are critical for metal industry today. Welding processes must get more effective and this can be done by mechanization and automation. Those systems are always expensive and they have to pay the investment back. In this case it is really important to optimize the needed intelligence and this way needed automation level, so that a company will get the best profit. This intelligence and automation level was earlier classified in several different ways which are not useful for optimizing the process of automation or mechanization of welding. In this study the intelligence of a welding system is defined in a new way to enable the welding system to produce a weld good enough. In this study a new way is developed to classify and select the internal intelligence level of a welding system needed to produce the weld efficiently. This classification contains the possible need of human work and its effect to the weld and its quality but does not exclude any different welding processes or methods. In this study a totally new way is developed to calculate the best optimization for the needed intelligence level in welding. The target of this optimization is the best possible productivity and quality and still an economically optimized solution for several different cases. This new optimizing method is based on grounds of product type, economical productivity, the batch size of products, quality and criteria of usage. Intelligence classification and optimization were never earlier made by grounds of a made product. Now it is possible to find the best type of welding system needed to welddifferent types of products. This calculation process is a universal way for optimizing needed automation or mechanization level when improving productivity of welding. This study helps the industry to improve productivity, quality and cost efficiency of welding workshops.
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.
Resumo:
Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with CuII and ZnII with a ML2 composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa)2], [Cu(qibsa)2] and [Zn(qibsa)2] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa)2] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed.
Resumo:
A method employing chitosan as complexant agent in the removal of copper(II) ions generally present in the Brazilian cachaça samples is herein proposed. The efficiency of this method is attributed to its high capacity of metal cations adsorption, mainly due to presence of hydroxyl and amine groups that can serve as chelating sites. The removal of copper(II) ions from this alcoholic beverage was efficient employing either in column and batch system. The analysis were carried out employing the flame atomic absorption spectrometry and the remaining copper(II) concentrations in the treated cachaça were lower than LOD of FAAS technique.
Resumo:
Herein, the immobilization of some Schiff base-copper(II) complexes in smectite clays is described as a strategy for the heterogenization of homogeneous catalysts. The obtained materials were characterized by spectroscopic techniques, mostly UV/Vis, EPR, XANES and luminescence spectroscopy. SWy-2 and synthetic Laponite clays were used for the immobilization of two different complexes that have previously shown catalytic activity in the dismutation of superoxide radicals, and disproportionation of hydrogen peroxide. The obtained results indicated the occurrence of an intriguing intramolecular redox process involving copper and the imine ligand at the surface of the clays. These studies are supported by computational calculations.