936 resultados para computer aided diagnostics
Resumo:
In the design of lattice domes, design engineers need expertise in areas such as configuration processing, nonlinear analysis, and optimization. These are extensive numerical, iterative, and lime-consuming processes that are prone to error without an integrated design tool. This article presents the application of a knowledge-based system in solving lattice-dome design problems. An operational prototype knowledge-based system, LADOME, has been developed by employing the combined knowledge representation approach, which uses rules, procedural methods, and an object-oriented blackboard concept. The system's objective is to assist engineers in lattice-dome design by integrating all design tasks into a single computer-aided environment with implementation of the knowledge-based system approach. For system verification, results from design examples are presented.
Resumo:
The refinement calculus is a well-established theory for deriving program code from specifications. Recent research has extended the theory to handle timing requirements, as well as functional ones, and we have developed an interactive programming tool based on these extensions. Through a number of case studies completed using the tool, this paper explains how the tool helps the programmer by supporting the many forms of variables needed in the theory. These include simple state variables as in the untimed calculus, trace variables that model the evolution of properties over time, auxiliary variables that exist only to support formal reasoning, subroutine parameters, and variables shared between parallel processes.
Resumo:
Recentemente, a expans??o do n??mero de munic??pios conveniados com a FNS fez aumentar a demanda por novos projetos de melhoria dos sistemas de ??gua e esgotos. Ao mesmo tempo, a FNS enfrentava car??ncia de pessoal t??cnico especializado, dificuldades de admiss??o de novos profissionais e limita????o de recursos para a contrata????o de projetos atrav??s de empresas privadas, inviabilizando o atendimento das demandas pela forma tradicional. Diante disso, servidores da FNS desenvolveram um software para projetos de redes de esgotos sanit??rios, utilizando os recursos modernos da computa????o gr??fica (CAD ??? Computer Aided Design). Acoplado ao CAD, prop??s-se a cria????o de um m??dulo de dimensionamento, resultando numa ferramenta completa de elabora????o de projetos, em ambiente computacional Windows, contemplando as v??rias etapas t??picas de um trabalho na ??rea, desde a digitaliza????o do levantamento topogr??fico, lan??amento da rede, c??lculos, planilhas, desenho e montagem final das pranchas geradas. Este sistema foi denominado Sancad. A utiliza????o do Sancad permitiu uma redu????o m??dia de 60 a 70% no tempo de elabora????o de projetos, significando uma forma de atender a um n??mero maior de demandas e de suprir a car??ncia de profissionais na FNS. Al??m disso, a utiliza????o do Sancad tem mostrado ganhos em termos de qualidade, corre????o e confiabilidade do produto final obtido. As previs??es iniciais quanto ?? abrang??ncia de utiliza????o do Sancad foram amplamente superadas, tendo o mesmo se tornado um padr??o para a ??rea de projetos de saneamento da FNS, estando instalado em 12 unidades da Funda????o em todo o Brasil e em processo de instala????o em outras. O Sancad tornou-se objeto de interesse de t??cnicos de saneamento e de estudantes de engenharia e arquitetura de institui????es p??blicas e privadas, que receberam treinamento a fim de conhec??-lo e utiliz??-lo. Finalmente, o sucesso da experi??ncia tem contribu??do para a dissemina????o da cultura de computa????o gr??fica e a ades??o dos profissionais da FNS e das autarquias municipais conveniadas ?? nova tecnologia. Neste mesmo sentido, ressalta-se a utiliza????o de teodolitos eletr??nicos ??? conhecidos como Esta????o Total ??? para a gera????o de plantas topogr??ficas j?? em formato digital, para serem usadas pelo Sancad, com novos ganhos de qualidade e produtividade na elabora????o dos projetos de saneamento
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.
Resumo:
This work addresses the effects of catalyst deactivation and investigates methods to reduce their impact on the reactive distillation columns performance. The use of variable feed quality and reboil ratio are investigated using a rigorous dynamic model developed in gPROMS and applied to an illustrative example, i.e., the olefin metathesis system, wherein 2-pentene reacts to form 2-butene and 3-hexene. Three designs and different strategies on column energy supply to tackle catalyst deactivation are investigated and the results compared.
Resumo:
This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design – including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model.
Resumo:
Although we have many electric devices at home, there are just few systems to evaluate, monitor and control them. Sometimes users go out and leave their electric devices turned on what can cause energy wasting and dangerous situations. Therefore most of the users may want to know the using states of their electrical appliances through their mobile devices in a pervasive way. In this paper, we propose an Intelligent Supervisory Control System to evaluate, monitor and control the use of electric devices in home, from outside. Because of the transferring data to evaluate, monitor and control user's location and state of home (ex. nobody at home) may be opened to attacks leading to dangerous situations. In our model we include a location privacy module and encryption module to provide security to user location and data. Intelligent Supervising Control System gives to the user the ability to manage electricity loads by means of a multi-agent system involving evaluation, monitoring, control and energy resource agents.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Imagem Digital com Radiação X.
Resumo:
This chapter presents some of the issues with holonic manufacturing systems. It starts by presenting the current manufacturing scenario and trends and then provides some background information on the holonic concept and its application to manufacturing. The current limitations and future trends of manufacturing suggest more autonomous and distributed organisations for manufacturing systems; holonic manufacturing systems are proposed as a way to achieve such autonomy and decentralisation. After a brief literature survey a specific research work is presented to handle scheduling in holonic manufacturing systems. This work is based on task and resource holons that cooperate with each other based on a variant of the contract net protocol that allow the propagation of constraints between operations in the execution plan. The chapter ends by presenting some challenges and future opportunities of research.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Imagem Digital por Radiação X.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
E-Learning frameworks are conceptual tools to organize networks of elearning services. Most frameworks cover areas that go beyond the scope of e-learning, from course to financial management, and neglects the typical activities in everyday life of teachers and students at schools such as the creation, delivery, resolution and evaluation of assignments. This paper presents the Ensemble framework - an e-learning framework exclusively focused on the teaching-learning process through the coordination of pedagogical services. The framework presents an abstract data, integration and evaluation model based on content and communications specifications. These specifications must base the implementation of networks in specialized domains with complex evaluations. In this paper we specialize the framework for two domains with complex evaluation: computer programming and computer-aided design (CAD). For each domain we highlight two Ensemble hotspots: data and evaluations procedures. In the former we formally describe the exercise and present possible extensions. In the latter, we describe the automatic evaluation procedures.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.