963 resultados para cobalt bromide catalyst
Resumo:
Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni) electrodeposited inside Cobalt (Co) nanotubes (a new system named Ni @ Co nanorods) were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of *15 lm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too
Resumo:
Superparamagnetic nanocomposites based on g-Fe2O3 and sulphonated polystyrene have been synthesized by ion exchange process and the preparation conditions were optimized. Samples were subjected to cycling to study the effect of cycling on the magnetic properties of these composites. The structural and magnetization studies have been carried out. Magnetization studies show the dependence of magnetization on the number of ion exchange cycles. Doping of cobalt at the range in to the g-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The exact amount of cobalt dopant as well as the iron content was estimated by Atomic Absorption Spectroscopy. The effect of cobalt in modifying the properties of the composites was then studied and the results indicate that the coercivity can be tuned by the amount of cobalt in the composites. The tuning of both the magnetization and the coercivity can be achieved by a combination of cycling of ion exchange and the incorporation of cobalt
Resumo:
Electrically conductive organic and metalloorganic polymers are of great interest and they have applications in electronic, optical, photonic, photoelectric, electrochemical, and dielectric devices. Tetrameric cobalt phthalocyanine was prepared by conventional chemical method. The dielectric permittivity of the tetrameric cobalt phthalocyanine sample was evaluated from the observed capacitance values in the frequency range 100 KHz to 5 MHz and in the temperature range of 300 to 383°K. It is found that the system obeys the Maxwell Wagner relaxation of space charge phenomenon. Further, from the permittivity studies AC conductivity was evaluated. The values of AC conductivity and DC conductivity were compared. Activation energy was calculated. To understand the conduction mechanism Mott’s variable range hopping model was applied to the system. The T 1/4 behavior of the DC conductivity along with the values of Mott’s Temperature (T0), density of states at the Fermi energy N (EF), and range of hopping R and hopping energy W indicate that the transport of charge carriers are by three-dimensional variable range hopping
Resumo:
In any investigation, information about the molecules under consideration is very essential for tailoring their properties. Evaluation of dispersion parameters, namely optical dielectric constant, static dielectric constant, relaxation time and spreading factor, assumes significance in this context. Dielectric spectroscopy is a useful tool for estimating these parameters. Not only does it reveal details about these constants but it also gives insight into the mechanism of conduction. In this paper the evaluation of dispersion parameters of cobalt phthalocyanine tetramer in the temperature range 300–393K is attempted using Cole–Cole plots. The temperature variation of the spreading factor indicates the existence of multiple equilibrium positions in the case of cobalt phthalocyanine tetramer. To the best of our knowledge, the evaluation of dispersion parameters for cobalt phthalocyanine tetramer is reported for the first time
Resumo:
In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method. Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications. The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process. Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process. Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays. The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification. The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers. Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs. In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260 Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions. For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia. Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction. SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis. In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR. In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis. In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS. Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261 Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties. Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol. Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol. DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method. DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.
Resumo:
Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates with anodized alumina mask prepared in different methods including 2 step anodization of porous alumina template and interference lithography assisted array of pores. The templates helped to define Ni nanodots inside the pores which in turn catalyzed the growth of carbon nanotubes inside the PECVD system at temperature of 700-750C using mixture of ammonia and acetylene gases. The resulting well-aligned multi-walled carbon nanotubes were further investigated using SEM, TEM and Raman spectroscopy. The size, shape and structure of the grown carbon nanotubes were also discussed.
Resumo:
When discussing the traditional and new missions of higher education (1996 Report to UNESCO of the International Commission on Education for the 21st Century) Jacques Delors stated that "Excessive attraction to social sciences has broken equilibrium of available graduates for workforce, thus causing doubts of graduates and employers on the quality of knowledge provided by higher education". Likewise, when discussing the progress of science and technology, the 1998 UNESCO World Conference on Higher Education concluded that "Another challenge concerts the latest advancements of Science, the sine qua non of sustainable development"; and that “with Information Technology, the unavoidable invasion of virtual reality has increased the distance between industrial and developing countries". Recreational Science has a long tradition all over the Educational World; it aims to show the basic aspects of Science, aims to entertain, and aims to induce thinking. Until a few years ago, this field of knowledge consisted of a few books, a few kits and other classical (yet innovative) ways to popularize the knowledge of Nature and the laws governing it. In Spain, the interest for recreational science has increased in the last years. First, new recreational books are being published and found in bookstores. Second the number of Science-related museums and exhibits is increasing. And third, new television shows are produced and new short science-based, superficial sketches are found in variety programs. However, actual programs in Spanish television dealing seriously with Science are scarce. Recreational Science, especially that related to physical phenomena like light or motion, is generally found at Science Museums because special equipment is required. On the contrary, Science related mathematics, quizzes and puzzles use to gather into books, e.g. the extensive collections by Martin Gardner. However, lately Science podcasts have entered the field of science communication. Not only traditional science journals and television channels are providing audio and video podcasts, but new websites deal exclusively with science podcasts, in particular on Recreational Science. In this communication we discuss the above mentioned trends and show our experience in the last two years in participating at Science Fairs and university-sponsored events to attract students to science and technology careers. We show a combination of real examples (e.g., mathemagic), imagination, use of information technology, and use of social networks. We present as well an experience on designing a computational, interactive tool to promote chemistry among high school, prospective students using computers ("Dancing with Bionanomolecules"). Like the concepts related to Web 2.0, it has been already proposed that a new framework for communication of science is emerging, i.e., Science Communication 2.0, where people and institutions develop new innovative ways to explain science topics to diverse publics – and where Recreational Science is likely to play a leading role
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Absolute intensity measurements have been made on the fundamental vibrations of methyl chloride, bromide, and iodide, and their fully deuterated derivatives, by integrating the optical density over the absorption bands. The bands were fully pressure broadened by using up to 80 atmos of foreign gas. Band separations were made graphically. The results are analyzed in terms of the dipole moment derivatives with respect to symmetry coordinates in the molecule, (∂p/∂Si). The data on the different isotopic species are shown to yield consistent results, and this requirement of consistency has also been used as an aid in the analysis. In the E‐class vibrations the signs of the dipole moment derivatives have been determined unambiguously by assuming the permanent dipole to be directed CH3+☒X—.
Resumo:
Two linear, trinuclear mixed-valence complexes, [Co-II{(mu-L-1)(mu-OAc)Co-III (OAc)}(2)] (1) and [Co-II(mu-L-2) (mu-OAc)Co-III(OAc)}(2)] (2) and two mononuclear Con' complexes [Co-III{L-3)(OAc)] (3), and [Co-III {L-4}(OAc)] (4) were prepared and the molecular structures of 1, 2 and 4 elucidated on the basis of X-ray crystallography [OAc = Acetate ion, H2L1 = H(2)Salen 1,6-bis(2-hydroxyphenyl)-2,5-diazahexa-1,5-diene, H2L2 H2Me2-Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene, H2L3 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta1,6-diene, H2L4 = H(2)Me(2)Salpn = 2,8-bis(2-hydroxyphenyl)3,7-diazanona-2,7-dienel. In complexes I and 2, the acetate groups show both monodentate and bridging bidentate coordination modes, whereas chelating bidentate acetate is present in 4. The terminal (CoN2O4)-N-III centres in 1 and 2 exhibit uniform facial arrangements of both non-bridged N2O and bridging O-3 donor sets and the Co-II centre is coordinated to six (four phenoxo and two acetato) oxygen atoms of the bridging ligands. The effective magnetic moment at room temperature corresponds to the presence of high-spin Coll in both 1 and 2. The complexes 1 and 2 are thus Co-III(S = 0)Co-II(S = 3/2)-Co-II(S = 0) trimers. Complexes 3 and 4 are monomeric and diamagnetic containing low-spin Co-III(S = 0) with chelating tetradentate Schiff base and bidentate acetate. Calculations based on DFT rationalise the formation of trinuclear or monomiclear complexes. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Catalyst-doped sodium aluminum hydrides have been intensively studied as solid hydrogen carriers for onboard proton-exchange membrane (PEM) fuel cells. Although the importance of catalyst choice in enhancing kinetics for both hydrogen uptake and release of this hydride material has long been recognized, the nature of the active species and the mechanism of catalytic action are unclear. We have shown by inelastic neutron scattering (INS) spectroscopy that a volatile molecular aluminum hydride is formed during the early stage of H-2 re-eneration of a depleted, catalyst-doped sodium aluminum hydride. Computational modeling of the INS spectra suggested the formation of AlH3 and oligomers (AlH3)(n) (Al2H6, Al3H9, and Al4H12 clusters), which are pertinent to the mechanism of hydrogen storage. This paper demonstrates, for the first time, the existence of these volatile species.
Resumo:
This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH4 are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)(3)H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH4 evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH4, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH4 are therefore made. (C) 2006 Elsevier Ltd. All rights reserved.