948 resultados para chaotic and diffusive motion
Resumo:
A gulf has tended to develop between the adoption and usage of information technology by different generations, at the heart of which is different ways of experiencing and relating to the world around us. This research idea is currently being developed following data collection and feedback is sought on ways forward to enable impact. The research focuses on information technology in the form of multimedia. Multimedia meaning ‘media’ and ‘content’ that uses a combination of different content forms; or electronically integrated communication engaging all or most of the senses (e.g. graphic art, sound, animation and full-motion video presented by way of computer or other electronic means) mainly through presentational technologies. Although multimedia is not new, some organization’s particularly those in the non-profit sector do not always have the technical or financial resources to support such systems and consequently may struggle to adopt and support its usage amongst different generations. However non-profit organizations are being forced to pay more attention to the way they communicate with markets and the public due to the professionalism of communication everywhere in society. The case study used for this study is a church circuit comprising of 15 churches in the Midlands region of the United Kingdom which was selected due to the diverse age groups catered for within this type of non-profit organization. Participants in the study also had a range of skills, experiences and backgrounds which adds to the diversity of the population studied. Data gathered focused on the attitudes and opinions of the adoption and use of multimedia amongst different age groups. 395 questionnaires were distributed, comprising of 11 opinion questions and 4 demographic questions. 83% of the questionnaires were returned, representing 35% of the total circuit membership. Three people from each of the following age categories were also interviewed: 1920 – 1946 (Matures); 1947-1964 (Baby Boomers); 1965-1982 (Generation X); 1983-2004 (Net Generation). Results of the questionnaire and comments from the interviews were found not to tally with the widespread assumption that the younger generation is attracted by the use of multimedia in comparison to the older generation. The highest proportion of those who said that they gain more from a service enhanced by multimedia was from the Baby Boomers. Comments from interviews suggested that: ‘we need to embrace multimedia if we are to attract and retain the younger generation’; ‘multimedia often helps children to remain focused and clarifies the objective of the service’. However, because the younger generations’ world tends to be dominated by computer technology the questionnaire showed that they are more likely to have higher standards when it comes to the use of multimedia, such as identifying higher levels of equipment failing to work and annoying use of sounds compared to older age groups. In comparison problems experienced with multimedia for the Matures age group had the highest percentage of difficulty with the size of letters; the colour of letters and background and the sound not loud enough which is to be expected. Since every organization is unique any type of multimedia adopted and used should be specific to their needs, its stakeholders and the physical building in order to enhance that uniqueness and its needs. Giving thought to whether the type of multimedia is the best method for communicating the message to the particular audience alongside how technical and financial resources are best used can assist in accommodating different age groups that need to be catered for.
Resumo:
The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.
Resumo:
This paper presents MOTION, a modular on-line model for urban traffic signal control. It consists of a network and a local level and builds on enhanced traffic state estimation. Special consideration is given to the prioritization of public transit. MOTION provides possibilities for the interaction with integrated urban management systems.
Resumo:
Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.
Resumo:
Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.
Resumo:
Background: The prevalence of Diabetes mellitus (DM) is on a rise in sub-Saharan Africa and will more than double by 2025. Cardiovascular disease (CVD) accounts for up to 2/3 of all deaths in the diabetic population. Of all the CVD deaths in DM, 3/4 occur in sub Saharan Africa (SSA). Non invasive identification of cardiac abnormalities, such as Left Ventricular Hypertrophy (LVH), diastolic and systolic dysfunction, is not part of diabetes complications surveillance programs in Uganda and there is limited data on this problem. This study sought to determine the prevalence, types and factors associated with echocardiographic abnormalities among newly diagnosed diabetic patients at Mulago National referral hospital in Uganda. Methods: In this cross sectional study conducted between June 2014 and December 2014, we recruited 202 newly diagnosed adult diabetic patients. Information on patients\' socio-demographics, bio-physical profile, biochemical testing and echocardiographic findings was obtained for all the participants using a pre-tested questionnaire. An abnormal echocardiogram in this study was defined as the presence of LVH, diastolic and/or systolic dysfunction and wall motion abnormality. Bivariate and multivariate logistic regression analyses were used to investigate the association of several parameters with echocardiographic abnormalities. Results: Of the 202 patients recruited, males were 102(50.5%) and the mean age was 46±15 years. Majority of patients had type 2 DM, 156(77.2%) and type 1 DM, 41(20.3%) with mean HbA1C of 13.9±5.3%. Mean duration of diabetes was 2 months. The prevalence of an abnormal echocardiogram was 67.8 % (95% CI 60%-74%). Diastolic dysfunction, systolic dysfunction, LVH and wall motion abnormalities were present in 55.0%, 21.8%, 19.3% and 4.0% of all the participants respectively. In bivariate logistic regression analysis, the factors associated with an abnormal echocardiogram were age (OR 1.09 [95% CI 1.06–1.12], P <0.0001), type 2 DM (OR 5.8[95% CI 2.77-12.07], P<0.0001), hypertension (OR 2.64[95% CI 1.44-4.85], P=0.002), obesity (OR 3.51[955 CI 1.25-9.84], P=0.017 and increased waist circumference (OR 1.02[95% CI 1.00-1.04], P=0.024. On Multiple logistic regression analysis, age was the only factor associated with an abnormal echocardiogram (OR 1.09[95%CI 1.05-1.15], P<0.0001). Conclusion: Echocardiographic abnormalities were common among newly diagnosed adults with DM. Traditional CVD risk factors were associated with an abnormal echocardiogram in this patient population. Due to a high prevalence of echocardiographic abnormalities among newly diagnosed diabetics, we recommend screening for cardiac disease especially in patients who present with traditional CVD risk factors. This will facilitate early diagnosis, management and hence better patient outcomes.
Resumo:
Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.
Resumo:
This phenomenological study explored how HR professionals who identified themselves as facilitators of strategic HRD (SHRD) perceived the experience of being an organizational agent-downsizing survivor. Criterion and snowball sampling were used to recruit 15 participants for this study. A semi-structured interview guide was used to interview participants. Creswell’s (2007) simplified version of Moustakas’s (1994) Modification of the Stevick-Colaizzi-Keen Method of Analysis of Phenomenological Data was used to analyze the data. Four main themes and corresponding sub-themes emerged from an inductive data analysis. The four main themes were a) the emotionality of downsizing, b) feeling responsible, c) choice and control, and d) possibilities for growth. Participants perceived downsizing as an emotional organizational change event that required them to manage their own emotions while helping others do the same. They performed their roles within an organizational atmosphere that was perceived as chaotic and filled with apprehension, shock, and a sense of ongoing loss, sadness and grieving. They sometimes experienced guilt and doubt and felt deceptive for having to keep secrets from others when planning for downsizing. Participants felt a strong sense of responsibility to protect employees emotionally, balance employee and organizational interests, and try to ensure the best outcomes for both. Often being there for others meant that they put on their games faces and took care of themselves last. Participants spoke of the importance of choosing one’s attitude, being proactive rather than reactive, and finding ways to regain control in the midst of organizational crisis. They also perceived that although downsizing was emotionally difficult to go through that it provided possibilities for self, employee, and organizational growth.
Resumo:
The present doctoral thesis discusses the ways to improve the performance of driving simulator, provide objective measures for the road safety evaluation methodology based on driver’s behavior and response and investigates the drivers' adaptation to the driving assistant systems. The activities are divided into two macro areas; the driving simulation studies and on-road experiments. During the driving simulation experimentation, the classical motion cueing algorithm with logarithmic scale was implemented in the 2DOF motion cueing simulator and the motion cues were found desirable by the participants. In addition, it found out that motion stimuli could change the behaviour of the drivers in terms of depth/distance perception. During the on-road experimentations, The driver gaze behaviour was investigated to find the objective measures on the visibility of the road signs and reaction time of the drivers. The sensor infusion and the vehicle monitoring instruments were found useful for an objective assessment of the pavement condition and the drivers’ performance. In the last chapter of the thesis, the safety assessment during the use of level 1 automated driving “ACC” is discussed with the simulator and on-road experiment. The drivers’ visual behaviour was investigated in both studies with innovative classification method to find the epochs of the distraction of the drivers. The behavioural adaptation to ACC showed that drivers may divert their attention away from the driving task to engage in secondary, non-driving-related tasks.
Resumo:
This thesis project is framed in the research field of Physics Education and aims to contribute to the reflection on the importance of disciplinary identities in addressing interdisciplinarity through the lens of the Nature of Science (NOS). In particular, the study focuses on the module on the parabola and parabolic motion, which was designed within the EU project IDENTITIES. The project aims to design modules to innovate pre-service teacher education according to contemporary challenges, focusing on interdisciplinarity in curricular and STEM topics (especially between physics, mathematics and computer science). The modules are designed according to a model of disciplines and interdisciplinarity that the project IDENTITIES has been elaborating on two main theoretical frameworks: the Family Resemblance Approach (FRA), reconceptualized for the Nature of science (Erduran & Dagher, 2014), and the boundary crossing and boundary objects framework by Akkerman and Bakker (2011). The main aim of the thesis is to explore the impact of this interdisciplinary model in the specific case of the implementation of the parabola and parabolic motion module in a context of preservice teacher education. To reach this purpose, we have analyzed some data collected during the implementation in order to investigate, in particular, the role of the FRA as a learning tool to: a) elaborate on the concept of “discipline”, within the broader problem to define interdisciplinarity; b) compare the epistemic core of physics and mathematics; c) develop epistemic skills and interdisciplinary competences in student-teachers. The analysis of the data led us to recognize three different roles played by the FRA: FRA as epistemological activator, FRA as scaffolding for reasoning and navigating (inhabiting) the complexity, and FRA as lens to investigate the relationship between physics and mathematics in the historical case.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Background: Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed. Methods: Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion ROM) were compared between the two groups walking at similar speeds. Results: The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05). Conclusions: The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.
Resumo:
Particle-image velocimetry (PIV) was used to visualize the flow within an optically transparent pediatric ventricular assist device (PVAD) under development in our laboratory The device studied is a diaphragm type pulsatile pump with an ejection volume of 30 ml per beating cycle intended for temporary cardiac assistance as a bridge to transplantation or recovery in children. Of particular interest was the identification of flow patterns, including regions of stagnation and/or strong turbulence that often promote thrombus formation and hemolysis, which can degrade the usefulness of such devices. For this purpose, phase-locked PIV measurements were performed in planes parallel to the diaphram that drives the flow in the device. The test fluid was seeded with 10 Am polystyrene spheres, and the motion of these particles was used to determine the instantaneous flow velocity distribution in the illumination plane. These measurements revealed that flow velocities up to 1.0 m/s can occur within the PVAD. Phase-averaged velocity fields revealed the fixed vortices that drive the bulk flow within the device, though significant cycle-to-cycle variability was also quite apparent in the instantaneous velocity distributions, most notably during the filling phase. This cycle-to-cycle variability can generate strong turbulence that may contribute to greater hemolysis. Stagnation regions have also been observed between the input and output branches of the prototype, which can increase the likelihood of thrombus formation. [DOI: 10.1115/1.4001252]
Resumo:
Contrary to the common pattern of spatial terms being metaphorically extended to location in time, the Australian language Jingulu shows an unusual extension of temporal markers to indicate location in space. Light verbs, which typically encode tense, aspect, mood and associated motion, are occasionally found on nouns to indicate the relative location of the referent with respect to the speaker. It is hypothesised that this pattern resulted from the reduction of verbal clauses used as relative modifiers to the nouns in question.