1000 resultados para ceramic laser
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Semicarbazide hydrobromide which is isomorphous with SEM.HCl, was expected to belong to a new family of ferroelectrics. Dielectric, thermal and other studies on these crystals have yielded results which show many peculiarities but not confirmed ferroelectricity in the low temperature phase. As such a Laser Raman spectrosocopic study of oriented singe crystals of SEM.HBr was made at 298°K and at 253°K. The results have been correlated with structural features and compared with SEM.HCl.
Resumo:
In this study, a quality assessment method based on sampling of primary laser inventory units (microsegments) was analysed. The accuracy of a laser inventory carried out in Kuhmo was analysed as a case study. Field sample plots were measured on the sampled microsegments in the Kuhmo inventory area. Two main questions were considered. Did the ALS based inventory meet the accuracy requirements set for the provider and how should a reliable, cost-efficient and independent quality assessment be undertaken. The agreement between control measurement and ALS based inventory was analysed in four ways: 1) The root mean squared errors (RMSEs) and bias were calculated. 2) Scatter plots with 95% confidence intervals were plotted and the placing of identity lines was checked. 3) Bland-Altman plots were drawn so that the mean difference of attributes between the control method and ALS-method was calculated and plotted against average value of attributes. 4) The tolerance limits were defined and combined with Bland-Altman plots. The RMSE values were compared to a reference study from which the accuracy requirements had been set to the service provider. The accuracy requirements in Kuhmo were achieved, however comparison of RMSE values proved to be difficult. Field control measurements are costly and time-consuming, but they are considered to be robust. However, control measurements might include errors, which are difficult to take into account. Using the Bland-Altman plots none of the compared methods are considered to be completely exact, so this offers a fair way to interpret results of assessment. The tolerance limits to be set on order combined with Bland-Altman plots were suggested to be taken in practise. In addition, bias should be calculated for total area. Some other approaches for quality control were briefly examined. No method was found to fulfil all the required demands of statistical reliability, cost-efficiency, time efficiency, simplicity and speed of implementation. Some benefits and shortcomings of the studied methods were discussed.
Resumo:
A 16-µm CO2-N2 downstream-mixing gasdynamic laser, where a cold CO2 stream is mixed with a vibrationally excited N2 stream at the exit of the nozzle, is studied theoretically. The flow field is analyzed using a two-dimensional, unsteady, laminar and viscous flow model including appropriate finite-rate vibrational kinetic equations. The analysis showed that local small-signal gain up to 21.75 m−1 can be obtained for a N2 reservoir temperature of 2000 K and a velocity ratio of 1:1 between the CO2 and N2 mixing streams. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
Lithium caesium sulphate has been reported to undergo a phase transition from the room temperature orthorhombic phase with space groupP cmn to a final phase with space groupP 22/n. Though a sharp anomaly in its physical properties has been found at 202.0;K, it was found that there was a need for careful investigations in the vicinity of 240 and 210.0;K. Since the changes in the crystal structure involve primarily a rotation of the SO4 tetrahedron about thec-axis and as this may be reflected both in the intensity and polarisation of the internal as well as external phonon modes, the laser Raman spectra of oriented single crystals of LiCsSO4 at different temperatures were investigated. For correlation and definite identification of the spectral features, its infrared absorption spectrum was also studied. An analysis of the intensities and polarizations of the internal modes of the sulphate ions reveals the change in symmetry of the crystal. The integrated intensity and peak height of thev 1 line, plotted against temperature show anomalous peaks in the region of the phase transition. Differential scanning calorimetric study gives the enthalpy change ΔH across the phase transition to be 0.213 kJ/mol.
Resumo:
Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.
Resumo:
This thesis contains five experimental spectroscopic studies that probe the vibration-rotation energy level structure of acetylene and some of its isotopologues. The emphasis is on the development of laser spectroscopic methods for high-resolution molecular spectroscopy. Three of the experiments use cavity ringdown spectroscopy. One is a standard setup that employs a non-frequency stabilised continuous wave laser as a source. In the other two experiments, the same laser is actively frequency stabilised to the ringdown cavity. This development allows for increased repetition rate of the experimental signal and thus the spectroscopic sensitivity of the method is improved. These setups are applied to the recording of several vibration-rotation overtone bands of both H(12)C(12)CH and H(13)C(13)CH. An intra-cavity laser absorption spectroscopy setup that uses a commercial continuous wave ring laser and a Fourier transform interferometer is presented. The configuration of the laser is found to be sub-optimal for high-sensitivity work but the spectroscopic results are good and show the viability of this type of approach. Several ro-vibrational bands of carbon-13 substituted acetylenes are recorded and analysed. Compared with earlier work, the signal-to-noise ratio of a laser-induced dispersed infrared fluorescence experiment is enhanced by more than one order of magnitude by exploiting the geometric characteristics of the setup. The higher sensitivity of the spectrometer leads to the observation of two new symmetric vibrational states of H(12)C(12)CH. The precision of the spectroscopic parameters of some previously published symmetric states is also improved. An interesting collisional energy transfer process is observed for the excited vibrational states and this phenomenon is explained by a simple step-down model.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
The analysis of the characteristics of a synchronously mode-locked and internally frequency-doubled dye laser is presented. Dependence of dye laser pulse characteristics on the cavity length mismatch of the pump laser and dye laser is studied. Variation of the minimum pulsewidth with intracavity bandwidth and the harmonic conversion efficiency is presented in the form of graphs.
Resumo:
Purpose To determine the association between conjunctival goblet cell density (GCD) assessed using in vivo laser scanning confocal microscopy and conjunctival impression cytology in a healthy population. Methods Ninety (90) healthy participants undertook a validated 5-item dry eye questionnaire, non-invasive tear film break-up time measurement, ocular surface fluorescein staining and phenol red thread test. These tests where undertaken to diagnose and exclude participants with dry eye. The nasal bulbar conjunctiva was imaged using laser scanning confocal microscopy (LSCM). Conjunctival impression cytology (CIC) was performed in the same region a few minutes later. Conjunctival goblet cell density was calculated as cells/mm2. Results There was a strong positive correlation of conjunctival GCD between LSCM and CIC (ρ = 0.66). Conjunctival goblet cell density was 475 ± 41 cells/mm2 and 466 ± 51 cells/mm2 measured by LSCM and CIC, respectively. Conclusions The strong association between in vivo and in vitro cellular analysis for measuring conjunctival GCD suggests that the more invasive CIC can be replaced by the less invasive LSCM in research and clinical practice.
Resumo:
A simple technique for determining the energy sensitivities for the thermographic recording of laser beams is described. The principle behind this technique is that, if a laser beam with a known spatial distribution such as a Gaussian profile is used for imaging, the radius of the thermal image formed depends uniquely on the intensity of the impinging beam. Thus by measuring the radii of the images produced for different incident beam intensities the minimum intensity necessary (that is, the threshold) for thermographic imaging is found. The diameter of the laser beam can also be found from this measurement. A simple analysis based on the temperature distribution in the laser heated material shows that there is an inverse square root dependence on pulse duration or period of exposure for the energy fluence of the laser beam required, both for the threshold and the subsequent increase in the size of the recording. It has also been shown that except for low intensity, long duration exposure on very low conductivity materials, heat losses are not very significant.
Resumo:
A theory for the emission of X-rays from a high density gaseous plasma interacting with CO2 laser is given. It predicts a sharp increase in the X-ray intensity for densities close to the critical.
Resumo:
Abstract is not available.
Resumo:
Heating of laser produced plasmas by an instability is investigated. For intense laser beams anomalous absorption is found. A comparison is made with the experiment.