953 resultados para cell cycle checkpoint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic cancer is an aggressive tumour following a multistep progression model through precursors called pancreatic intraepithelial neoplasia (PanIN). Identification of reliable prognostic markers would help in improving survival. The aim of this study was to investigate the role as well as the prognostic significance of different cell cycle and proliferation markers, namely p21, p27, p53 and Ki-67, in pancreatic carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

microRNAs (miRNAs) are small non-coding RNAs that are frequently involved in carcinogenesis. Although many miRNAs form part of integrated networks, little information is available how they interact with each other to control cellular processes. miR-34a and miR-15a/16 are functionally related; they share common targets and control similar processes including G1-S cell cycle progression and apoptosis. The aim of this study was to investigate the combined action of miR-34a and miR-15a/16 in non-small cell lung cancer (NSCLC) cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholangiocarcinoma is the second most common malignant tumor of the liver. We analyzed, immunohistochemically, the significance of cell cycle- and apoptosis-related markers in 128 cholangiocarcinomas (42 intrahepatic, 70 extrahepatic, and 16 gallbladder carcinomas) combined in a tissue microarray. Follow-up was available for 57 patients (44.5%). In comparison with normal tissue (29 specimens), cholangiocarcinomas expressed significantly more frequently p53, bcl-2, bax, and COX-2 (P.05 <). Intrahepatic tumors were significantly more frequently bcl-2+ and p16+, whereas extrahepatic tumors were more often p53+ (P < .05). Loss of p16 expression was associated with reduced survival of patients. Our data show that p53, bcl-2, bax, and COX-2 have an important role in the pathogenesis of cholangiocarcinomas. The differential expression of p16, bcl-2, and p53 between intrahepatic and extrahepatic tumors demonstrates that there are location-related differences in the phenotype and the genetic profiles of these tumors. Moreover, p16 was identified as an important prognostic marker in cholangiocarcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the two major constituents of eukaryotic cell membranes. In the protist Trypanosoma brucei, PE and PC are synthesized exclusively via the Kennedy pathway. To determine which organelles or processes are most sensitive to a disruption of normal phospholipid levels, the cellular consequences of a decrease in the levels of PE or PC, respectively, were studied following RNAi knock-down of four enzymes of the Kennedy pathway. RNAi against ethanolamine-phosphate cytidylyltransferase (ET) disrupted mitochondrial morphology and ultrastructure. Electron microscopy revealed alterations of inner mitochondrial membrane morphology, defined by a loss of disk-like cristae. Despite the structural changes in the mitochondrion, the cells maintained oxidative phosphorylation. Our results indicate that the inner membrane morphology of T. brucei procyclic forms is highly sensitive to a decrease of PE levels, as a change in the ultrastructure of the mitochondrion is the earliest phenotype observed after RNAi knock-down of ET. Interference with phospholipid synthesis also impaired normal cell-cycle progression. ET RNAi led to an accumulation of multinucleate cells. In contrast, RNAi against choline-/ethanolamine phosphotransferase, which affected PC as well as PE levels, caused a cell division phenotype characterized by non-division of the nucleus and production of zoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that Estrogen Receptor alpha (ERα) is an important indicator for diagnosis, prognosis and treatment of breast cancers. However, the question remains as to the role of ERα in the cell in the presence versus absence of 17-β estradiol In this dissertation the role of ERα in both its unliganded and liganded state, with respect to the cell cycle will be explored. The cell line models used in this project are ER-positive MCF-7 cells with and without siRNA to ERα and ER-positive MDA-MB-231 cells that have been engineered to express ERα. Cells were synchronized and the cell cycle progression was monitored by flow cytometric analysis. Using these methods, two specific questions were addressed: Does ERα modulate the cell cycle differently under liganded versus unliganded conditions? And, does the presence of ERα regulate cell cycle phase transitions? The results show for the first time that ERα is cell cycle regulated and modulates the progression of cells through S and G2/M phases of the cell cycle. Ligand bound ERα increases progression through S and G2/M phases, whereas unliganded ERα acts as an inhibitor of cell cycle progression. To further investigate the cell cycle regulated effects of liganded ERα, a luciferase assay was performed and showed that the transcription of target genes such as Progestrone Receptor (PgR) and Trefoil protein (pS2) increased duing S and G2/M phases when ERα is bound to ligand. Additionally, complex formation between cyclin B and ER α was shown by immunoprecipitation and led to the discovery that anaphase promoting complex (APC) is the E3 ligase for both cyclin B and ERα at the termination of M phase. Our findings suggest that unliganded ERα has an inhibitory effect on the progression of the cell cycle. Therefore, it is reasonable to speculate that the combination of drugs that lower estrogen level (such as aromatase inhibitors) and preserves ERα from degradation would provide better outcome for breast cancer treatment. We have shown that APC functions as the E3 ligase for ERα and thus might provide a target to design a specific inhibitor of ERα degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strain of Saccaromyces cerevisiae (SC3B) with a temperature sensitive defect in the synthesis of DNA has been isolated. This defect is due to a single recessive mutation in a gene named INS1 required for the initiation of S phase. Arrested cells carrying the ins1$\sp{ts}$ allele are defective in the completion of G1 to S phase transition events including SPB duplication or separation, initiation of DNA synthesis, normal control of budding, and bud neck stability. The mutation and a gene which complements the mutation were mapped to chromosome IV. The complementing gene was proved to be the wild type allele of the temperature sensitive mutation by genetic linkage of an integrated clone. A very low abundance 4.2 kb RNA message was observed in the strain SC3B which increased greatly in this strain transformed with a multiple copy plasmid carrying the complementing clone. The wild type gene was sequenced and found to encode a 1268 amino acid protein of with a molecular weight of 142,655 Daltons. Computer assisted searches for similar DNA sequences revealed no significant homology matches. However, searches for protein sequence homology revealed a protein (the DIS3 gene product of S. pombe) with a similar sequence over a 534 amino acid stretch to the predicted INS1 gene product. A later search revealed a near identical sequence for a gene (SRK1) also isolated from S. cerevisiae. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examined cellular mechanisms involved in the production and secretion of human (gamma)IFN. The hypothesis of this investigation was that (gamma)IFN is an export glycoprotein whose synthesis in human T lymphocytes is dependent on membrane stimulation, polypeptide synthesis in the rough endoplasmic reticulum, packaging in the Golgi complex, and release from the cell by exocytosis.^ The model system for this examination utilized T lymphocytes from normal donors and patients with chronic lymphocytic leukemia (CLL) induced in vitro with the tumor promoter, phorbol 12-myristate 13-acetate (PMA) and the lectin, phytohemagglutinin (PHA) to produce (gamma)IFN. This study reconfirmed the ability of PMA and PHA to synergistically induce (gamma)IFN production in normal T lymphocytes, as measured by viral inhibition assays and radio-immunoassays for (gamma)IFN. The leukemic T cells were demonstrated to produce (gamma)IFN in response to treatment with PHA. PMA treatment also induced (gamma)IFN production in the leukemic T cells, which was much greater than that observed in similarly treated normal T cells. In these same cells, however, combined treatment of the agents was shown to be ineffective at inducing (gamma)IFN production beyond the levels stimulated by the individual agents. In addition, the present study reiterated the synergistic effect of PMA/PHA on the stimulation of growth kinetics in normal T cells. The cell cycle of the leukemic T cells was also responsive to treatment with the agents, particularly with PMA treatment. A number of morphological alterations were attributed to PMA treatment including the acquisition of an elongated configuration, nuclear folds, and large cytoplasmic vacuoles. Many of the effects were observed to be reversible with dilution of the agents, and reversion to this state occurred more rapidly in the leukemic T cells. Most importantly, utilization of a thin section immuno-colloidal gold labelling technique for electron microscopy provided, for the first time, direct evidence of the cellular mechanism of (gamma)IFN production and secretion. The results of this latter study support the idea that (gamma)IFN is produced in the rough endoplasmic reticulum, transferred to the Golgi complex for accumulation and packaging, and released from the T cells by exocytosis. ^