716 resultados para bismuth film electrode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and easy approach to produce polymeric microchips with integrated copper electrodes for capacitively coupled contactless conductivity detection (CD) is described. Copper electrodes were fabricated using a printed circuit board (PCB) as an inexpensive thin-layer of metal. The electrode layout was first drawn and laser printed on a wax paper sheet. The toner layer deposited on the paper sheet was thermally transferred to the PCB surface working as a mask for wet chemical etching of the copper layer. After the etching step, the toner was removed with an acetonitrile-dampened cotton. A poly(ethylene terephthalate) (PET) film coated with a thin thermo-sensitive adhesive layer was used to laminate the PCB plate providing an insulator layer of the electrodes to perform CID measurements. Electrophoresis microchannels were fabricated in poly(dimethylsiloxane) (PDMS) by soft lithography and reversibly sealed against the PET film. These hybrid PDMS/PET chips exhibited a stable electroosmotic mobility of 4.25 +/- 0.04 x 10(-4) V cm(-2) s(-1), at pH 6.1, over fifty runs. Efficiencies ranging from 1127 to 1690 theoretical plates were obtained for inorganic cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical monitoring systems are necessary to manufacture multilayer thin-film optical filters with low tolerance on spectrum specification. Furthermore, to have better accuracy on the measurement of film thickness, direct monitoring is a must. Direct monitoring implies acquiring spectrum data from the optical component undergoing the film deposition itself, in real time. In making film depositions on surfaces of optical components, the high vacuum evaporator chamber is the most popular equipment. Inside the evaporator, at the top of the chamber, there is a metallic support with several holes where the optical components are assembled. This metallic support has rotary motion to promote film homogenization. To acquire a measurement of the spectrum of the film in deposition, it is necessary to pass a light beam through a glass witness undergoing the film deposition process, and collect a sample of the light beam using a spectrometer. As both the light beam and the light collector are stationary, a synchronization system is required to identify the moment at which the optical component passes through the light beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, poly(vinyl butyral) (PVB) film originated from the mechanical separation of windshields was tested as all impact modifier of Polyamide-6 (PA-6). The changes undergone by PVB film during the recycling process and the blend manufacturing were evaluated by thermal analyses, infrared spectroscopy and loss oil ignition. Blends of PA-6/original PVB film and PA-6/recovered PVB film were obtained in concentrations ranging from 90/10 to 60/40. The mechanical properties of the blends were investigated and explained in light of the blends morphologies, which in turns were correlated to the changes undergone by the PVB film during the recycling process. The original film presented a plasticizer content of 33 wt.%, which decreased to as low as 20 wt.%, after the recycling and blend preparation processes. The PA-6/PVB film blends presented lower values of tensile strength and Young`s modulus than Polyamide-6, but all blends presented a dramatic increase in their toughness, with a special feature for the 40 wt.%(, blend, which resulted in a super toughened material (impact strength exceeding 500 J/m). Similar results were obtained with recovered PVB film and super tough blends were also obtained. The use of recovered PVB resulted in a smaller improvement of the impact strength due to the loss of plasticizer undergone during the recycling process. The morphological observations showed that if the interparticle distance is smaller than around 0.2 mu m (critical value), the notched Izod impact strength values increase considerably and the fracture surface of blends exhibit characteristics of tough failure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of a near-beta Ti-13Nb-13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks` solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 degrees C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar energy powered failing film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO(2), making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO(2) from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector. and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorbent and corrosion resistant films are useful for sensor development. Therefore, the aim of this work is the production and characterization of plasma polymerized fluorinated organic ether thin films for sensor development. The polymerized reactant was methyl nonafluoro(iso)butyl ether. Infrared Spectroscopy showed fluorinated species and eventually CO but CH(n) is a minor species. Contact angle measurements indicated that the film is hydrophobic and organophilic but oleophobic. Optical microscopy reveals not only a good adherence on metals and acrylic but also resistance for organic solvents, acid and basic aqueous solution exposure. Double layer and intermixing are possible and might lead to island formation. Quartz Crystal Microbalance showed that 2-propanol permeates the film but there is no sensitivity to n-hexane. The microreactor manufactured using a 73 cm long microchannel can retain approximately 9 X 10(-4) g/cm(2) of 2-propanol in vapor phase. Therefore, the film is a good candidate for preconcentration of volatile organic compounds even in corrosive environment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorbent materials and composites are quite useful for sensor development. Therefore, the aim of this work is the surface modification of particulates and/or composite formation. The material was produced by plasma polymerization of HMDS (hexamethyldisilazane) in a single step. SEM analysis shows good surface coverage of particulates with a plasma polymerized film formed by several clusters that might increase adsorption. Particles (starch. 5 5 mu m) recovered with HMDS films show good properties for retention of medium-size Organic molecules, such as dye. Thin films formed by a mixture of particles and plasma polymerized thin film HMDS species were obtained in a single step and can be used for retention of organic compounds, in liquid or gaseous phase. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO(2) thin film electrodes in NaCl or Na(2)SO(4) medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L(-1) NaCl pH 4.0 under UV light and an applied potential of +1.0V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.