964 resultados para artificial neural network (ANN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of pavement layer moduli through the use of an artificial neural network is a new concept which provides a less strenuous strategy for backcalculation procedures. Artificial Neural Networks are biologically inspired models of the human nervous system. They are specifically designed to carry out a mapping characteristic. This study demonstrates how an artificial neural network uses non-destructive pavement test data in determining flexible pavement layer moduli. The input parameters include plate loadings, corresponding sensor deflections, temperature of pavement surface, pavement layer thicknesses and independently deduced pavement layer moduli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:


In order to predict compressive strength of geopolymers prepared from alumina-silica natural products, based on the effect of Al 2 O 3 /SiO 2, Na 2 O/Al 2 O 3, Na 2 O/H 2 O, and Na/[Na+K], more than 50 pieces of data were gathered from the literature. The data was utilized to train and test a multilayer artificial neural network (ANN). Therefore a multilayer feedforward network was designed with chemical compositions of alumina silicate and alkali activators as inputs and compressive strength as output. In this study, a feedforward network with various numbers of hidden layers and neurons were tested to select the optimum network architecture. The developed three-layer neural network simulator model used the feedforward back propagation architecture, demonstrated its ability in training the given input/output patterns. The cross-validation data was used to show the validity and high prediction accuracy of the network. This leads to the optimum chemical composition and the best paste can be made from activated alumina-silica natural products using alkaline hydroxide, and alkaline silicate. The research results are in agreement with mechanism of geopolymerization.


Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000829

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is aimed to model and forecast the tourism demand for Mozambique for the period from January 2004 to December 2013 using artificial neural networks models. The number of overnight stays in Hotels was used as representative of the tourism demand. A set of independent variables were experimented in the input of the model, namely: Consumer Price Index, Gross Domestic Product and Exchange Rates, of the outbound tourism markets, South Africa, United State of America, Mozambique, Portugal and the United Kingdom. The best model achieved has 6.5% for Mean Absolute Percentage Error and 0.696 for Pearson correlation coefficient. A model like this with high accuracy of forecast is important for the economic agents to know the future growth of this activity sector, as it is important for stakeholders to provide products, services and infrastructures and for the hotels establishments to adequate its level of capacity to the tourism demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea- level variations have a significant impact on coastal areas. Prediction of sea level variations expected from the pre most critical information needs associated with the sea environment. For this, various methods exist. In this study, on the northern coast of the Persian Gulf have been studied relation to the effectiveness of parameters such as pressure, temperature and wind speed on sea leve and associated with global parameters such as the North Atlantic Oscillation index and NAO index and present statistic models for prediction of sea level. In the next step by using artificial neural network predict sea level for first in this region. Then compared results of the models. Prediction using statistical models estimated in terms correlation coefficient R = 0.84 and root mean square error (RMS) 21.9 cm for the Bushehr station, and R = 0.85 and root mean square error (RMS) 48.4 cm for Rajai station, While neural network used to have 4 layers and each middle layer six neurons is best for prediction and produces the results reliably in terms of correlation coefficient with R = 0.90126 and the root mean square error (RMS) 13.7 cm for the Bushehr station, and R = 0.93916 and the root mean square error (RMS) 22.6 cm for Rajai station. Therefore, the proposed methodology could be successfully used in the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a supervised fuzzy adaptive resonance theory neural network, i.e., Fuzzy ARTMAP (FAM), is integrated with a heuristic Gravitational Search Algorithm (GSA) that is inspired from the laws of Newtonian gravity. The proposed FAM-GSA model combines the unique features of both constituents to perform data classification. The classification performance of FAM-GSA is benchmarked against other state-of-art machine learning classifiers using an artificially generated data set and two real data sets from different domains. Comparatively, the empirical results indicate that FAM-GSA generally is able to achieve a better classification performance with a parsimonious network size, but with the expense of a higher computational load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of artificial neural networks (ANN) in finance is relatively new area of research. We employed ANNs that used both fundamental and technical inputs to predict future prices of widely held Australian stocks and used these predicted prices for stock portfolio selection over a 10-year period (2001-2011). We found that the ANNs generally do well in predicting the direction of stock price movements. The stock portfolios selected by the ANNs with median accuracy are able to generate positive alpha over the 10-year period. More importantly, we found that a portfolio based on randomly selected network configuration had zero chance of resulting in a significantly negative alpha but a 27% chance of yielding a significantly positive alpha. This is in stark contrast to the findings of the research on mutual fund performance where active fund managers with negative alphas outnumber those with positive alphas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage detection by measuring and analyzing vibration signals in a machine component is an established procedure in mechanical and aerospace engineering. This paper presents vibration signature analysis of steel bridge structures in a nonconventional way using artificial neural networks (ANN). Multilayer perceptrons have been adopted using the back-propagation algorithm for network training. The training patterns in terms of vibration signature are generated analytically for a moving load traveling on a trussed bridge structure at a constant speed to simulate the inspection vehicle. Using the finite-element technique, the moving forces are converted into stationary time-dependent force functions in order to generate vibration signals in the structure and the same is used to train the network. The performance of the trained networks is examined for their capability to detect damage from unknown signatures taken independently at one, three, and five nodes. It has been observed that the prediction using the trained network with single-node signature measurement at a suitability chosen location is even better than that of three-node and five-node measurement data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper elucidates the methodology of applying artificial neural network model (ANNM) to predict the percent swell of calcitic soil in sulphuric acid solutions, a complex phenomenon involving many parameters. Swell data required for modelling is experimentally obtained using conventional oedometer tests under nominal surcharge. The phases in ANN include optimal design of architecture, operation and training of architecture. The designed optimal neural model (3-5-1) is a fully connected three layer feed forward network with symmetric sigmoid activation function and trained by the back propagation algorithm to minimize a quadratic error criterion.The used model requires parameters such as duration of interaction, calcite mineral content and acid concentration for prediction of swell. The observed strong correlation coefficient (R2 = 0.9979) between the values determined by the experiment and predicted using the developed model demonstrates that the network can provide answers to complex problems in geotechnical engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents ongoing work on data collection and collation from a large number of laboratory cement-stabilization projects worldwide. The aim is to employ Artificial Neural Networks (ANN) to establish relationships between variables, which define the properties of cement-stabilized soils, and the two parameters determined by the Unconfined Compression Test, the Unconfined Compressive Strength (UCS), and stiffness, using E50 calculated from UCS results. Bayesian predictive neural network models are developed to predict the UCS values of cement-stabilized inorganic clays/silts, as well as sands as a function of selected soil mix variables, such as grain size distribution, water content, cement content and curing time. A model which can predict the stiffness values of cement-stabilized clays/silts is also developed and compared to the UCS model. The UCS model results emulate known trends better and provide more accurate estimates than the results from the E50 stiffness model. © 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system. by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level policies. We proposed two PAY policies-Back propagation Power Management (BPPM) and Radial Basis Function Power management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79,145,1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.

In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, practical generation of identification keys for biological taxa using a multilayer perceptron neural network is described. Unlike conventional expert systems, this method does not require an expert for key generation, but is merely based on recordings of observed character states. Like a human taxonomist, its judgement is based on experience, and it is therefore capable of generalized identification of taxa. An initial study involving identification of three species of Iris with greater than 90% confidence is presented here. In addition, the horticulturally significant genus Lithops (Aizoaceae/Mesembryanthemaceae), popular with enthusiasts of succulent plants, is used as a more practical example, because of the difficulty of generation of a conventional key to species, and the existence of a relatively recent monograph. It is demonstrated that such an Artificial Neural Network Key (ANNKEY) can identify more than half (52.9%) of the species in this genus, after training with representative data, even though data for one character is completely missing.