974 resultados para and topography
Resumo:
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.
Resumo:
Seasonally dry evergreen forests in southeast Pará, Brazil are transitional between taller closed forests of the interior Amazon Basin and woodland savannas (cerrados) of Brazil's south-central plains. We describe abiotic and biotic gradients in this region near the frontier town of Redenção where forest structure and composition grade subtly across barely undulating topography. Annual precipitation averaged 1859 mm between 1995-2001, with nearly zero rainfall during the dry season months of June August. Annual vertical migrations of deep-soil water caused by seasonal rainfall underlie edaphic and floristic differences between high- and low-ground terrain. Low-ground soils are hydromorphic, shaped by perching water tables during the wet season, pale gray, brown, or white in color, with coarse texture, low moisture retention during the dry season, and relatively high macro-nutrient status in the surface horizons. Forest canopies on low ground are highly irregular, especially along seasonal streams, while overstory community composition differs demonstrably from that on high ground. High-ground soils are dystrophic, well-drained through the wet season, brown or red-yellow in color, with finer texture, higher moisture retention, and low macro-nutrient status in the surface horizons compared to low-ground soils. Forest canopies are, on average, taller, more regular, and more closed on high ground. Low-ground areas can be envisioned as energy and nutrient sinks, where, because of hydrologic cycles, canopy disturbance likely occurs more frequently than at high-ground positions if not necessarily at larger scales.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
A new echinostome cercaria, Cercaria kuwaitae XI sp.n., from the prosobranch gastropod Cerithidea cingulata (Gmelin) from Kuwait Bay is described. The new cercaria is characterized by 23 collar spines and primary excretory tubules with distinct diverticula. The cercaria encysts in the snail host and is similar to those of Acanthoparyphium sp. The surface topography of the redia, cercaria and metacercarial cyst wall is studied by scanning electron microscopy. This is the first echinostome cercaria to be recorded in a gastropod from the Arabian Gulf region.
Resumo:
This letter presents a comparison between threeFourier-based motion compensation (MoCo) algorithms forairborne synthetic aperture radar (SAR) systems. These algorithmscircumvent the limitations of conventional MoCo, namelythe assumption of a reference height and the beam-center approximation.All these approaches rely on the inherent time–frequencyrelation in SAR systems but exploit it differently, with the consequentdifferences in accuracy and computational burden. Aftera brief overview of the three approaches, the performance ofeach algorithm is analyzed with respect to azimuthal topographyaccommodation, angle accommodation, and maximum frequencyof track deviations with which the algorithm can cope. Also, ananalysis on the computational complexity is presented. Quantitativeresults are shown using real data acquired by the ExperimentalSAR system of the German Aerospace Center (DLR).
Resumo:
Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.
Resumo:
To evaluate the severity of airway pathologies, quantitative dimensioning of airways is of utmost importance. Endoscopic vision gives a projective image and thus no true scaling information can be directly deduced from it. In this article, an approach based on an interferometric setup, a low-coherence laser source and a standard rigid endoscope is presented, and applied to hollow samples measurements. More generally, the use of the low-coherence interferometric setup detailed here could be extended to any other endoscopy-related field of interest, e.g., gastroscopy, arthroscopy and other medical or industrial applications where tri-dimensional topology is required. The setup design with a multiple fibers illumination system is presented. Demonstration of the method ability to operate on biological samples is assessed through measurements on ex vivo pig bronchi.
Resumo:
Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.
Resumo:
Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radiation throughout the year since its topography has slopes predominantly facing opposing geographic directions. Soil data (pH, C, N, P, H+Al, Ca, Mg, K, Al, Na, sand, and silt) and plant litter data (N, K, Ca, P, and Mg) were gathered together with the geographic coordinates (to model the spatial structure) of 40 sampling units established at two sites composed of slopes predominantly facing northwest and southeast (20 units each). Soil and litter chemical properties varied more among slopes within similar geographic orientations than between the slopes facing opposing directions. Both the incident solar radiation and the spatial structure of the area were relevant in explaining the patterns detected in variation of soil and plant litter. Individual contributions of incident solar radiation to explain the variation in the properties evaluated suggested that this and other environmental factors may play a particularly relevant role in determining soil and plant litter distribution in tropical areas with heterogeneous topography. Furthermore, this study corroborates that the spatial structure of the area also plays an important role in the distribution of soil and litter within this type of landscape, which appears to be consistent with the action of water movement mechanisms in such areas.
Resumo:
In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine-resolution catchment-wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high-resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The Anti-Atlas basement massif extends South of the High Atlas, and, despite a very mild Cenozoic deformation, its altitude exceeds 1500m in large areas, reaching 3305m in Jbel Sirwa. Structural contours of the present elevation of a polygenic planation surface (the High Erosional surface) and of the base of Cretaceous and Neogene inliers have been performed to characterize the major tectonic structures. Gentle Cenozoic WSW-ENE- and N-Strending folds, of 60 to100km wavelength, reactivate Variscan structures, being the major contributors to the local topography of the Anti-Atlas. Reactivated thrusts of decakilometric to kilometric-scale and E-W trend involving the Neogene rocks exhibit a steep attitude and a small displacement, but they also produce a marked topographic expression. The resulting Cenozoic horizontal shortening along N-S sections across the Anti-Atlas is about 1%. The position of the major anticlinal hinges determines the location of the fluvial divides of the Warzazat basin and the Anti-Atlas, and a structural depression on one of these hinges (Jbel Saghro anticline) allowed the formerly endorheic Warzazat basin to drain southwards. The first Cenozoic structures generating local topography are of pre-mid Miocene age (postdated by 6.7Ma volcanic rocks at the Jbel Saghro), whereas the youngest thrust movements postdate the Pliocene sedimentary and volcanic rocks (involving 2.1Ma volcanic rocks at Jbel Sirwa). In addition to these features, the mean elevation of the Anti-Atlas at the regional scale is also the result of a mantle thermal anomaly reported in previous works for the entire Atlas system.
Resumo:
Vätning av fasta ytor är ett viktigt fenomen i såväl naturen som i en lång rad av industriella tillämpningar. Det är allmänt känt att vätningen av en fast yta styrs av ytans kemi samt struktur. Målsättningen med avhandlingen var att studera hur kemisk heterogenitet och ytråhet på nanometernivå påverkar vätningsegenskaperna hos en fast yta. Ytorna som studerades var titandioxid-baserade kerama ytor som framställdes med hjälp av en sol-gel process. Vätningstudierna utfördes genom kontaktvinkelmätningar, vilket innebär att man mäter vinkeln som vätska/luft-gränsskiktet hos en vätskedroppe bildar mot en fast yta. Ytråheten hos materialen studerades främst genom atomkraftsmikroskopi (AFM). I AFM detekteras ytans struktur av en mycket skarp nål som skannar ytan. Resultaten i avhandlingen kunde framgångsrikt modelleras med existerande teorier för vätning av heterogena ytor.