809 resultados para affect-based trust
Resumo:
The management and coordination of business-process collaboration experiences changes because of globalization, specialization, and innovation. Service-oriented computing (SOC) is a means towards businessprocess automation and recently, many industry standards emerged to become part of the service-oriented architecture (SOA) stack. In a globalized world, organizations face new challenges for setting up and carrying out collaborations in semi-automating ecosystems for business services. For being efficient and effective, many companies express their services electronically in what we term business-process as a service (BPaaS). Companies then source BPaaS on the fly from third parties if they are not able to create all service-value inhouse because of reasons such as lack of reasoures, lack of know-how, cost- and time-reduction needs. Thus, a need emerges for BPaaS-HUBs that not only store service offers and requests together with information about their issuing organizations and assigned owners, but that also allow an evaluation of trust and reputation in an anonymized electronic service marketplace. In this paper, we analyze the requirements, design architecture and system behavior of such a BPaaS-HUB to enable a fast setup and enactment of business-process collaboration. Moving into a cloud-computing setting, the results of this paper allow system designers to quickly evaluate which services they need for instantiationg the BPaaS-HUB architecture. Furthermore, the results also show what the protocol of a backbone service bus is that allows a communication between services that implement the BPaaS-HUB. Finally, the paper analyzes where an instantiation must assign additional computing resources vor the avoidance of performance bottlenecks.
Resumo:
New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore diameters between 2 and 50 nm) silicon- and silica-based materials as pharmaceutical carriers for poorly water soluble drugs was evaluated. Thermally oxidized and carbonized mesoporous silicon materials, ordered mesoporous silicas MCM-41 and SBA-15, and non-treated mesoporous silicon and silica gel were assessed in the experiments. The characteristic properties of these materials are the narrow pore diameters and the large surface areas up to over 900 m²/g. Loading of poorly water soluble drugs into these pores restricts their crystallization, and thus, improves drug dissolution from the materials as compared to the bulk drug molecules. In addition, the wide surface area provides possibilities for interactions between the loaded substance and the carrier particle, allowing the stabilization of the system. Ibuprofen, indomethacin and furosemide were selected as poorly soluble model drugs in this study. Their solubilities are strongly pH-dependent and the poorest (< 100 µg/ml) at low pH values. The pharmaceutical performance of the studied materials was evaluated by several methods. In this work, drug loading was performed successfully using rotavapor and fluid bed equipment in a larger scale and in a more efficient manner than with the commonly used immersion methods. It was shown that several carrier particle properties, in particular the pore diameter, affect the loading efficiency (typically ~25-40 w-%) and the release rate of the drug from the mesoporous carriers. A wide pore diameter provided easier loading and faster release of the drug. The ordering and length of the pores also affected the efficiency of the drug diffusion. However, these properties can also compensate the effects of each other. The surface treatment of porous silicon was important in stabilizing the system, as the non-treated mesoporous silicon was easily oxidized at room temperature. Different surface chemical treatments changed the hydrophilicity of the porous silicon materials and also the potential interactions between the loaded drug and the particle, which further affected the drug release properties. In all of the studies, it was demonstrated that loading into mesoporous silicon and silica materials improved the dissolution of the poorly soluble drugs as compared to the corresponding bulk compounds (e.g. after 30 min ~2-7 times more drug was dissolved depending on the materials). The release profile of the loaded substances remained similar also after 3 months of storage at 30°C/56% RH. The thermally carbonized mesoporous silicon did not compromise the Caco-2 monolayer integrity in the permeation studies and improved drug permeability was observed. The loaded mesoporous silica materials were also successfully compressed into tablets without compromising their characteristic structural and drug releasing properties. The results of this research indicated that mesoporous silicon/silica-based materials are promising materials to improve the dissolution of poorly water soluble drugs. Their feasibility in pharmaceutical laboratory scale processes was also confirmed in this thesis.
Resumo:
Tämä työ tarkastelee kansallista ja paikallista omistajuutta Namibian opetussektorin kehittämisohjelmassa. Opetussektorin kehittämisohjelma ETSIP on 15-vuotinen sektoriohjelma vuosille 2005-2015 ja sen tavoitteena on edesauttaa Namibian kehittymistä tietoyhteiskunnaksi. Tutkimuksen tarkoituksena on selvittää miten kansallinen ja paikallinen omistajuus on toteutunut ETSIP prosessin aikana. Erityisesti pyritään selvittämään paikallistason opetussektorin virkamiesten näkemyksiä ETSIP prosessista, heidän roolistaan siinä ja siitä millaisia vaikuttamisen ja hallinnan mahdollisuuksia heillä on ollut prosessin aikana. Tutkimuksen lähtökohta on laadullinen ja lähestymistapa konstruktionistinen: tutkimus tarkastelee todellisuutta ihmisten kokemusten, näkemysten ja toiminnan kautta. Tutkimusaineisto koostuu haastatteluista, epävirallisista keskusteluista, lehtiartikkeleista ja ETSIP dokumenteista. Tutkimus osoittaa että kansallinen omistajuus on epämääräinen käsite sillä kansallisia toimijoita ja näkemyksiä on useita. Tutkimus vahvistaa Castel-Brancon huomion siitä, että omistajuutta on tarkasteltava kontekstissaan: muuttuvana ja kilpailtuna. ETSIPin rinnalle ollaan valmistelemassa uutta strategista ohjelmaa opetusministeriölle mikä saattaa muuttaa omistajuutta ETSIPiin. ETSIP dokumenttien omistajuusretoriikka myötäilee kansainvälisiä sitoumuksia avun vaikuttavuuden parantamiseksi mutta niistä puuttuu syvällisempi analyysi siitä, miten kansallinen ja paikallinen omistajuus toteutuisi käytännössä. Avunantajien näkemys omistajuudesta on suppea: omistajuus nähdään lähinnä sitoutumisena ennalta määrättyyn politiikkaohjelmaan. Haastatteluaineistosta nousee esiin Whitfieldin ja Frazerin jaottelu suppeista ja laajoista omistajuuskäsityksistä. Sitoutumista ETSIP ohjelmaan pidetään tärkeänä mutta riittämättömänä määritteenä omistajuudelle. Paikallisella tasolla sitoutuminen ETSIP ohjelman periaatteisiin ja tavoitteisiin on toteutunut melko hyvin mutta jos omistajuutta tarkastellaan laajemmin vaikutusvallan ja hallinnan käsitteiden kautta voidaan todeta että omistajuus on ollut heikkoa. Paikallisella tasolla ei ole ollut juurikaan vaikutusvaltaa ETSIP ohjelman sisältöön eikä mahdollisuutta hallita ohjelman toteutusta ja päättää siitä mitä hankkeita ohjelman kautta rahoitetaan. Tujanin demokraattisen omistajuuden käsite kuvaa tarvetta muuttaa ja laajentaa omistajuusajattelua huomioiden paikallisen tason paremmin. Tämä tutkimus viittaa siihen että omistajuuden toteutuminen paikallisella tasolla edellyttäisi institutionaalisen kulttuurin muutosta ja institutionaalisen legitimiteetin vahvistamista. Omistajuuden mahdollistamiseksi paikallisella tasolla tarvittaisiin poliittista johtajuutta, luottamusta, vastuullisuuden kulttuurin kehittämistä, tehokkaampaa tiedonjakoa, laajaa osallistumista, vuoropuhelua ja yhteistyötä. Ennen kaikkea tarvittaisiin paikallisen tason vaikutusvaltaa päätöksenteossa ja kontrollia resurssien käytöstä. Tälle muutokselle on selvä tarve ja tilaus.
Resumo:
The purpose of this study was to examine whether trust in supervisor and trust in senior management enhance employees' job satisfaction and organizational commitment, and whether trust mediates the relationship between perceived justice and these outcomes. Trust in supervisor was expected to mediate the effects of distributive justice and interactional justice, and trust in senior management was expected to mediate the effects of procedural justice. Theoretical background of the study is based on the framework for trust in leadership developed by Dirks and Ferrin (2002). According to the framework, perceived fairness of leaders' actions helps employees to draw inferences about the basis of the relationship and about leaders' characters. This allows trust formation. Reciprocation of care and concern in the relationship and confidence in leaders' characters are likely to enhance employees' job satisfaction and organizational commitment. This study was conducted with cross-sectional data (A/ = 960) of employees from social and health care sector. Hypotheses were studied using correlation analysis and several hierarchical regression analyses. Significances of the mediations were assessed using the Sobel test. Results partially supported the hypotheses. Trust in leadership was positively related to job satisfaction and organizational commitment. Trust in senior management mediated the relationship between procedural justice and the outcomes. Some support was also found for the mediating effect of trust in supervisor in the relationship between distributive justice and organizational commitment. Due to high correlation between trust in supervisor anil interactional justice, it wasn't possible to study the mediating e fleet of trust in supervisor in the relationship between interactional justice and the outcomes. Against expectations, results indicated that trust in senior management had a mediating effect in the relationship between distributive justice and organizational commitment, and in the relationship between interactional justice and organizational commitment. Results also indicated that trust in supervisor had a mediating effect in the relationship between procedural justice and organizational commitment.
Resumo:
High power converters are used in variable speed induction motor drive applications. Riding through a short term power supply glitch is becoming an important requirement in these power converters. The power converter uses a large number of control circuit boards for its operation. The control power supply need to ensure that any glitch in the grid side does not affect any of these control circuit boards. A power supply failure of these control cards results in shut down of the entire system. The paper discusses the ride through system developed to overcome voltage sags and short duration outages at the power supply terminals of the control cards in these converters. A 240VA non-isolated, bi-directional buck-boost converter has been designed to be used along with a stack of ultracapacitors to achieve the same. A micro-controller based digital control platform made use of to achieve the control objective. The design of the ultracapacitor stack and the bidirectional converter is described the performance of the experimental set-up is evaluated.
Resumo:
A force-torque sensor capable of accurate measurement of the three components of externally applied forces and moments is required for force control in robotic applications involving assembly operations. The goal in this paper is to design a Stewart platform based force torque sensor at a near-singular configuration sensitive to externally applied moments. In such a configuration, we show an enhanced mechanical amplification of leg forces and thereby higher sensitivity for the applied external moments. In other directions, the sensitivity will be that of a normal load sensor determined by the sensitivity of the sensing element and the associated electronic amplification, and all the six components of the force and torque can be sensed. In a sensor application, the friction, backlash and other non-linearities at the passive spherical joints of the Stewart platform will affect the measurements in unpredictable ways. In this sensor, we use flexural hinges at the leg interfaces of the base and platform of the sensor. The design dimensions of the flexure joints in the sensor have been arrived at using FEA. The sensor has been fabricated, assembled and instrumented. It has been calibrated for low level loads and is found to show linearity and marked sensitivity to moments about the three orthogonal X, Y and Z axes. This sensor is compatible for usage as a wrist sensor for a robot under development at ISRO Satellite Centre.
Resumo:
A supply chain ecosystem consists of the elements of the supply chain and the entities that influence the goods, information and financial flows through the supply chain. These influences come through government regulations, human, financial and natural resources, logistics infrastructure and management, etc., and thus affect the supply chain performance. Similarly, all the ecosystem elements also contribute to the risk. The aim of this paper is to identify both performances-based and risk-based decision criteria, which are important and critical to the supply chain. A two step approach using fuzzy AHP and fuzzy technique for order of preference by similarity to ideal solution has been proposed for multi-criteria decision-making and illustrated using a numerical example. The first step does the selection without considering risks and then in the next step suppliers are ranked according to their risk profiles. Later, the two ranks are consolidated into one. In subsequent section, the method is also extended for multi-tier supplier selection. In short, we are presenting a method for the design of a resilient supply chain, in this paper.
Resumo:
We have recently suggested a method (Pallavi Bhattacharyya and K. L. Sebastian, Physical Review E 2013, 87, 062712) for the analysis of coherence in finite-level systems that are coupled to the surroundings and used it to study the process of energy transfer in the Fenna-Matthews-Olson (FMO) complex. The method makes use of adiabatic eigenstates of the Hamiltonian, with a subsequent transformation of the Hamiltonian into a form where the terms responsible for decoherence and population relaxation could be separated out at the lowest order. Thus one can account for decoherence nonperturbatively, and a Markovian type of master equation could be used for evaluating the population relaxation. In this paper, we apply this method to a two-level system as well as to a seven-level system. Comparisons with exact numerical results show that the method works quite well and is in good agreement with numerical calculations. The technique can be applied with ease to systems with larger numbers of levels as well. We also investigate how the presence of correlations among the bath degrees of freedom of the different bacteriochlorophyll a molecules of the FMO Complex affect the rate of energy transfer. Surprisingly, in the cases that we studied, our calculations suggest that the presence of anticorrelations, in contrast to correlations, make the excitation transfer more facile.
Resumo:
For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.
Resumo:
In this paper, we propose a new state transition based embedding (STBE) technique for audio watermarking with high fidelity. Furthermore, we propose a new correlation based encoding (CBE) scheme for binary logo image in order to enhance the payload capacity. The result of CBE is also compared with standard run-length encoding (RLE) compression and Huffman schemes. Most of the watermarking algorithms are based on modulating selected transform domain feature of an audio segment in order to embed given watermark bit. In the proposed STBE method instead of modulating feature of each and every segment to embed data, our aim is to retain the default value of this feature for most of the segments. Thus, a high quality of watermarked audio is maintained. Here, the difference between the mean values (Mdiff) of insignificant complex cepstrum transform (CCT) coefficients of down-sampled subsets is selected as a robust feature for embedding. Mdiff values of the frames are changed only when certain conditions are met. Hence, almost 50% of the times, segments are not changed and still STBE can convey watermark information at receiver side. STBE also exhibits a partial restoration feature by which the watermarked audio can be restored partially after extraction of the watermark at detector side. The psychoacoustic model analysis showed that the noise-masking ratio (NMR) of our system is less than -10dB. As amplitude scaling in time domain does not affect selected insignificant CCT coefficients, strong invariance towards amplitude scaling attacks is also proved theoretically. Experimental results reveal that the proposed watermarking scheme maintains high audio quality and are simultaneously robust to general attacks like MP3 compression, amplitude scaling, additive noise, re-quantization, etc.
Resumo:
Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.
Resumo:
Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.
An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).
The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.
A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.
Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.
Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.
Resumo:
Thermal resistance and thermal rise-time are two basic parameters that affect most of the performances of a laser diode greatly. By measuring waveforms received after a spectroscope at wavelengths varied step-by-step, the spectrally resolved waveforms can be converted to calculate the thermal rise-time. Basic formulas for the spectrum variation of a laser diode and the measurement set-up by using a Boxcar are described in the paper. As an example, the thermal rise-time of a p-side up packaged short-pulse laser diode was measured by the method to be 390 mu s. The method will be useful in characterizing diode lasers and LID modules in high-power applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
[EN] The main goal of this study is to analyze how organizational commitment has a mediating effect on the relation between transformational leadership and organizational trust. Therefore we developed an organization analysis based on a survey that was used to collect primary data from a sample of 58 employees. We obtained a 71% response rate and these data were analyzed using quantitative methodological techniques and linear regression. The research was conducted at the Serralves Foundation (Porto, Portugal) to empirically test the proposed research model and its hypotheses. The empirical results confirm that transformational leadership positively enhances organizational trust. However, transformational leadership and organizational trust are not significantly influenced by organizational commitment, thus not having a mediating effect on this relationship. Such results assume particular relevance because they become a basis for comparative studies in similar organizations. This study brings some theoretical contributions to the literature by analyzing the mediating effect of organizational commitment on the relation between transformational leadership and organizational trust in cultural organizations and has also some practical management implications, as it draws attention to the importance of a set of practices, job satisfaction oriented, which can effectively lead to organizational commitment intervention in the relationship between transformational leadership and organizational trust.
Resumo:
[EN] A new concept for fluid flow manipulation in microfluidic paper-based analytical devices ( µPADs) is presented by introducing ionogel materials as passive pumps. µPADs were fabricated using a new doubleside contact stamping process and ionogels were precisely photopolymerised at the inlet of the µPADs.The ionogels remain mainly on the surface of the paper and get absorbed in the superficial paper-fibers allowing for the liquid to flow from the ionogel into the paper easily. As a proof of concept the fluid flow and mixing behaviour of two different ionogels µPADs were compared with the non-treated µPADs.It was demonstrated that both ionogels highly affect the fluid flow by delaying the flow due to their different physical and chemical properties and water holding capacities.