954 resultados para Yeast Pyruvate Decarboxylase
Resumo:
In this study we investigated the variations of the maximal activities of the rate-controlling glycolytic enzymes (i.e., hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK) and of the pyruvate-dehydrogenase complex (PDHc) during the early embryogenesis of Xenopus laevis (from cleavage through hatching). All the enzymatic assays, using different coupled reactions, were performed spectrophotometrically on cytosolic and mitochondrial fractions. The maximal HK activity increases markedly from neurulation onwards, PFK activity presents a peak around gastrulation, PK activity remains relatively constant throughout the period studied and the highest PDHc activity is observed during cleavage. The specific activities display the same temporal pattern. Furthermore, in the sequence of reactions by which glucose is degraded to form acetyl-CoA, the maximal activities of PFK and PK are not limiting while those of HK and PDHc could be rate-limiting at relatively late developmental stages (hatching).
Resumo:
Rho GTPases regulate the actin cytoskeleton in all eukaryotes. Fission yeast Cdc42 is involved in actin cable assembly and formin For3 regulation. We isolated cdc42-879 as a thermosensitive strain with actin cable and For3 localization defects. In a multicopy suppressor screening, we identified pob1(+) as suppressor of cdc42-879 thermosensitivity. Pob1 overexpression also partially restores actin cables and localization of For3 in the mutant strain. Pob1 interacts with Cdc42 and this GTPase regulates Pob1 localization and/or stability. The C-terminal pleckstrin homology (PH) domain of Pob1 is required for Cdc42 binding. Pob1 also binds to For3 through its N-terminal sterile alpha motif (SAM) domain and contributes to the formin localization at the cell tips. The previously described pob1-664 mutant strain (Mol. Biol. Cell. 10, 2745-2757, 1999), which carries a mutation in the PH domain, as well as pob1 mutant strains in which Pob1 lacks the N-terminal region (pob1DeltaN) or the SAM domain (pob1DeltaSAM), have cytoskeletal defects similar to that of cdc42-879 cells. Expression of constitutively active For3DAD* partially restores actin organization in cdc42-879, pob1-664, pob1DeltaN, and pob1DeltaSAM. Therefore, we propose that Pob1 is required for For3 localization to the tips and facilitates Cdc42-mediated relief of For3 autoinhibition to stimulate actin cable formation.
Resumo:
Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.
Resumo:
This review focuses on the role of proteins in the production and maintenance of foam in both sparkling wines and beer. The quality of the foam in beer but especially in sparkling wines depends, among other factors, on the presence of mannoproteins released from the yeast cell walls during autolysis. These proteins are hydrophobic, highly glycosylated, and their molecular masses range from 10 to 200 kDa characteristics that allow mannoproteins to surround and thus stabilize the gas bubbles of the foam. Both the production and stabilization of foam also depend on other proteins. In wine, these include grape-derived proteins such as vacuolar invertase; in beer, barley-derived proteins, such as LTP1, protein Z, and hordein-derived polypeptides, are even more important in this respect than mannoproteins
Resumo:
Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses.
Resumo:
Background: Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion: Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Resumo:
Background: Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results: Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions: We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.
Resumo:
Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these factors ultimately depends on the G1 cyclin Cln3. Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3. Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.
Resumo:
We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25uC to 37uC. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins.
Resumo:
Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.
Resumo:
Background: In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results: In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p). Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p) from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions: The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.
Resumo:
Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest.
Resumo:
We have developed an activator/repressor expression system for budding yeast in which tetracyclines control in opposite ways the ability of tetR-based activator and repressor molecules to bind tetO promoters. This combination allows tight expression of tetO-driven genes, both in a direct (tetracycline-repressible) and reverse (tetracycline-inducible) dual system. Ssn6 and Tup1, that are components of a general repressor complex in yeast, have been tested for their repressing properties in the dual system, using lacZ and CLN2 as reporter genes. Ssn6 gives better results and allows complete switching-off of the regulated genes, although increasing the levels of the Tup1-based repressor by expressing it from a stronger promoter improves repressing efficiency of the latter. Effector-mediated shifts between expression and non-expression conditions are rapid. The dual system here described may be useful for the functional analysis of essential genes whose conditional expression can be tightly controlled by tetracyclines.
Resumo:
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.