178 resultados para YERSINIA ENTEROCOLITICA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-efficiency entry of the enteropathogenic bacterium Yersinia pseudotuberculosis into nonphagocytic cells is mediated by the bacterial outer membrane protein invasin. Invasin-mediated uptake requires high affinity binding of invasin to multiple β1 chain integrin receptors on the host eukaryotic cell. Previous studies using inhibitors have indicated that high-efficiency uptake requires tyrosine kinase activity. In this paper we demonstrate a requirement for focal adhesion kinase (FAK) for invasin-mediated uptake. Overexpression of a dominant interfering form of FAK reduced the amount of bacterial entry. Specifically, the autophosphorylation site of FAK, which is a reported site of c-Src kinase binding, is required for bacterial internalization, as overexpression of a derivative lacking the autophosphorylation site had a dominant interfering effect as well. Cultured cells expressing interfering variants of Src kinase also showed reduced bacterial uptake, demonstrating the involvement of a Src-family kinase in invasin-promoted uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rpoH regulatory region of different members of the enteric bacteria family was sequenced or downloaded from GenBank and compared. In addition, the transcriptional start sites of rpoH of Yersinia frederiksenii and Proteus mirabilis, two distant members of this family, were determined. Sequences similar to the σ70 promoters P1, P4 and P5, to the σE promoter P3 and to boxes DnaA1, DnaA2, cAMP receptor protein (CRP) boxes CRP1, CRP2 and box CytR present in Escherichia coli K12, were identified in sequences of closely related bacteria such as: E.coli, Shigella flexneri, Salmonella enterica serovar Typhimurium, Citrobacter freundii, Enterobacter cloacae and Klebsiella pneumoniae. In more distant bacteria, Y.frederiksenii and P.mirabilis, the rpoH regulatory region has a distal P1-like σ70 promoter and two proximal promoters: a heat-induced σE-like promoter and a σ70 promoter. Sequences similar to the regulatory boxes were not identified in these bacteria. This study suggests that the general pattern of transcription of the rpoH gene in enteric bacteria includes a distal σ70 promoter, >200 nt upstream of the initiation codon, and two proximal promoters: a heat-induced σE-like promoter and a σ70 promoter. A second proximal σ70 promoter under catabolite-regulation is probably present only in bacteria closely related to E.coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 70-kb virulence plasmid (sometimes called pYV) enables Yersinia spp. to survive and multiply in the lymphoid tissues of their host. It encodes the Yop virulon, a system consisting of secreted proteins called Yops and their dedicated type III secretion apparatus called Ysc. The Ysc apparatus forms a channel composed of 29 proteins. Of these, 10 have counterparts in almost every type III system. Secretion of some Yops requires the assistance, in the bacterial cytosol, of small individual chaperones called the Syc proteins. These chaperones act as bodyguards or secretion pilots for their partner Yop. Yop proteins fall into two categories. Some are intracellular effectors, whereas the others are “translocators” needed to deliver the effectors across the eukaryotic plasma membrane, into eukaryotic cells. The translocators (YopB, YopD, LcrV) form a pore of 16–23 Å in the eukaryotic cell plasma membrane. The effector Yops are YopE, YopH, YpkA/YopO, YopP/YopJ, YopM, and YopT. YopH is a powerful phosphotyrosine phosphatase playing an antiphagocytic role by dephosphorylating several focal adhesion proteins. YopE and YopT contribute to antiphagocytic effects by inactivating GTPases controlling cytoskeleton dynamics. YopP/YopJ plays an anti-inflammatory role by preventing the activation of the transcription factor NF-κB. It also induces rapid apoptosis of macrophages. Less is known about the role of the phosphoserine kinase YopO/YpkA and YopM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering site-specific amino acid substitutions into the protein-tyrosine phosphatase (PTPase) PTP1 and the dual-specific vaccinia H1-related phosphatase (VHR), has kinetically isolated the two chemical steps of the reaction and provided a rare opportunity for examining transition states and directly observing the phosphoenzyme intermediate. Changing serine to alanine in the active-site sequence motif HCXXGXXRS shifted the rate-limiting step from intermediate formation to intermediate hydrolysis. Using phosphorus 31P NMR, the covalent thiol-phosphate intermediate was directly observed during catalytic turnover. The importance of the conserved aspartic acid (D92 in VHR and D181 in PTP1) in both chemical steps was established. Kinetic analysis of D92N and D181N mutants indicated that aspartic acid acts as a general acid by protonating the leaving-group phenolic oxygen. Structure-reactivity experiments with native and aspartate mutant enzymes established that proton transfer is concomitant with P-O cleavage, such that no charge develops on the phenolic oxygen. Steady- and presteady-state kinetics, as well as NMR analysis of the double mutant D92N/S131A (VHR), suggested that the conserved aspartic acid functions as a general base during intermediate hydrolysis. As a general base, aspartate would activate a water molecule to facilitate nucleophilic attack. The amino acids involved in transition-state stabilization for cysteinylphosphate hydrolysis were confirmed by the x-ray structure of the Yersinia PTPase complexed with vanadate, a transition-state mimic that binds covalently to the active-site cysteine. Consistent with the NMR, x-ray, biochemical, and kinetic data, a unifying mechanism for catalysis is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli (EPEC) causes a characteristic histopathology in intestinal epithelial cells called the attaching and effacing lesion. Although the histopathological lesion is well described the bacterial factors responsible for it are poorly characterized. We have identified four EPEC chromosomal genes whose predicted protein sequences are similar to components of a recently described secretory pathway (type III) responsible for exporting proteins lacking a typical signal sequence. We have designated the genes sepA, sepB, sepC, and sepD (sep, for secretion of E. coli proteins). The predicted Sep polypeptides are similar to the Lcr (low calcium response) and Ysc (yersinia secretion) proteins of Yersinia species and the Mxi (membrane expression of invasion plasmid antigens) and Spa (surface presentation of antigens) regions of Shigella flexneri. Culture supernatants of EPEC strain E2348/69 contain several polypeptides ranging in size from 110 kDa to 19 kDa. Proteins of comparable size were recognized by human convalescent serum from a volunteer experimentally infected with strain E2348/69. A sepB mutant of EPEC secreted only the 110-kDa polypeptide and was defective in the formation of attaching and effacing lesions and protein-tyrosine phosphorylation in tissue culture cells. These phenotypes were restored upon complementation with a plasmid carrying an intact sepB gene. These data suggest that the EPEC Sep proteins are components of a type III secretory apparatus necessary for the export of virulence determinants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For 21 strains of Salmonella enterica, nucleotide sequences were obtained for three invasion genes, spaO, spaP, and spaQ, of the chromosomal inv/spa complex, the products of which form a protein export system required for entry of the bacteria into nonphagocytic host cells. These genes are present in all eight subspecies of the salmonellae, and homologues occur in a variety of other bacteria, including the enteric pathogens Shigella and Yersinia, in which they are plasmid borne. Evolutionary diversification of the invasion genes among the subspecies of S. enterica has been generally similar in pattern and average rate to that of housekeeping genes. However, the range of variation in evolutionary rate among the invasion genes is unusually large, and there is a relationship between the evolutionary rate and cellular location of the invasion proteins, possibly reflecting diversifying selection on exported proteins in adaptation to variable host factors in extracellular environments. The SpaO protein, which is hypervariable in S. enterica and exhibits only 24% sequence identity with its homologues in Shigella and Yersinia, is secreted. In contrast, the membrane-associated proteins SpaP, SpaQ, and InvA are weakly polymorphic and have > 60% sequence identity with the corresponding proteins of other enteric bacteria. Acquisition of the inv/spa genes may have been a key event in the evolution of the salmonellae as pathogens, following which the invention of flagellar phase shifting facilitated niche expansion to include warm-blooded vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The locus of enterocyte effacement (LEE) is a large multigene chromosomal segment encoding gene products responsible for the generation of attaching and effacing lesions in many diarrheagenic Escherichia coli strains. A recently sequenced LEE harboring a pathogenicity island (PAI) from a Shiga toxin E. coli serotype 026 strain revealed a LEE PAI (designated LEE 026) almost identical to that obtained from a rabbit-specific enteropathogenic 015:H- strain. LEE 026 comprises 59,540 bp and is inserted at 94 min within the mature pheU tRNA locus. The LEE 026 PAI is flanked by two direct repeats of 137 and 136 bp (DR1 and DR2), as well as a gene encoding an integrase belonging to the P4 integrase family. We examined LEE 026 for horizontal gene transfer. By generating mini-LEE plasmids harboring only DR1 or DR2 with or without the integrase-like gene, we devised a simple assay to examine recombination processes between these sequences. Recombination was shown to be integrase dependent in a Delta recA E. coli K-12 strain background. Recombinant plasmids harboring a single direct repeat cloned either with or without the LEE 026 integrase gene were found to insert within the chromosomal pheU locus of E. coli K-12 strains with equal efficiency, suggesting that an endogenous P4-like integrase can substitute for this activity. An integrase with strong homology to the LEE 026 integrase was detected on the K-12 chromosome associated with the leuX tRNA locus at 97 min. Strains deleted for this integrase demonstrated a reduction in the insertion frequency of plasmids harboring only the DR into the pheU locus. These results provide strong evidence that LEE-harboring elements are indeed mobile and suggest that closely related integrases present on the chromosome of E. coli strains contribute to the dynamics of PAI mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All pathogens require high energetic influxes to counterattack the host immune system and without this energy bacterial infections are easily cleared. This study is an investigation into one highly bioenergetic pathway in Pseudomonas aeruginosa involving the amino acid L-serine and the enzyme L-serine deaminase (L-SD). P. aeruginosa is an opportunistic pathogen causing infections in patients with compromised immune systems as well as patients with cystic fibrosis. Recent evidence has linked L-SD directly to the pathogenicity of several organisms including but not limited to Campylobacter jejuni, Mycobacterium bovis, Streptococcus pyogenes, and Yersinia pestis. We hypothesized that P. aeruginosa L-SD is likely to be critical for its virulence. Genome sequence analysis revealed the presence of two L-SD homo logs encoded by sdaA and sdaB. We analyzed the ability of P. aeruginosa to utilize serine and the role of SdaA and SdaB in serine deamination by comparing mutant strains of sdaA (PAOsdaA) and sdaB (PAOsdaB) with their isogenic parent P. aeruginosa P AO 1. We demonstrated that P. aeruginosa is unable to use serine as a sole carbon source. However, serine utilization is enhanced in the presence of glycine and this glycine-dependent induction of L-SD activity requires the inducer serine. The amino acid leucine was shown to inhibit L-SD activity from both SdaA and SdaB and the net contribution to L-serine deamination by SdaA and SdaB was ascertained at 34% and 66 %, respectively. These results suggest that P. aeruginosa LSD is quite different from the characterized E. coli L-SD that is glycine-independent but leucine-dependent for activation. Growth mutants able to use serine as a sole carbon source were also isolated and in addition, suicide vectors were constructed which allow for selective mutation of the sdaA and sdaB genes on any P. aeruginosa strain of interest. Future studies with a double mutant will reveal the importance of these genes for pathogenicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestistopoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia colitopoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La gastroenteritis infecciosa continúa siendo un problema de salud pública. La etiología bacteriana es la responsable de la mayoría de los casos graves. En nuestro país, Campylobacter y Salmonella son los géneros bacterianos más prevalentes, mientras que Yersinia y Shigella son mucho menos frecuentes. La mayoría de los casos suelen ser autolimitados y, en general, el tratamiento antibiótico no está indicado, salvo en pacientes con factores de riesgo de infección grave y en shigelosis. Ciprofloxacino, cefalosporinas de tercera generación, azitromicina, ampicilina, cotrimoxazol y doxiciclina son los fármacos más recomendados. El patrón de sensibilidad de las diferentes bacterias determina la elección del tratamiento antibiótico más adecuado. El objetivo de esta revisión es analizar la situación, las novedades y la evolución de la resistencia y la multirresistencia en estos 4 enteropatógenos.