965 resultados para Y ALLOYS
Resumo:
The microstructures of the grain boundaries in epitaxial YBa2Cu3O7-δ thin films grown on [001]-tilt yttria-stabilized ZrO2 bicrystal substrates were characterized by TEM and at. force microscopy. The exact boundary plane geometries of the bicrystal substrates were not transferred to the films which instead had wiggling grain boundaries. [on SciFinder(R)]
Resumo:
Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.
The electrochemical corrosion behaviour of quaternary gold alloys when exposed to 3.5% NaCl solution
Resumo:
Lower carat gold alloys, specifically 9 carat gold alloys, containing less than 40 % gold, and alloying additions of silver, copper and zinc, are commonly used in many jewellery applications, to offset high costs and poor mechanical properties associated with pure gold. While gold is considered to be chemically inert, the presence of active alloying additions raises concerns about certain forms of corrosion, particularly selective dissolution of these alloys. The purpose of this study was to systematically study the corrosion behaviour of a series of quaternary gold–silver–copper–zinc alloys using dc potentiodynamic scanning in saline (3.5 % NaCl) environment. Full anodic/cathodic scans were conducted to determine the overall corrosion characteristics of the alloy, followed by selective anodic scans and subsequent morphological and compositional analysis of the alloy surface and corroding media to determine the extent of selective dissolution. Varying degrees of selective dissolution and associated corrosion rates were observed after anodic polarisation in 3.5 % NaCl, depending on the alloy composition. The corrosion behaviour of the alloys was determined by the extent of anodic reactions which induce (1) formation of oxide scales on the alloy surface and or (2) dissolution of Zn and Cu species. In general, the improved corrosion characteristics of alloy #3 was attributed to the composition of Zn/Cu in the alloy and thus favourable microstructure promoting the formation of protective oxide/chloride scales and reducing the extent of Cu and Zn dissolution.
Resumo:
This thesis examined the possible role of Y-box binding protein 1 (YBX1) in prostate cancer aggression and spread. Novel roles were uncovered for YBX1 in the regulation of several genes previously implicated in prostate cancer, as well as showing an effect for YBX1 in increasing tumour cell invasion and movement and reciprocal regulation of androgen-regulated gene networks. In addition, it was found that Y-box 1 regulated several other well-known cancer genes implicated in breast and other cancers. The work performed in this thesis has strengthened the foundations for pursuing YBX1 as a possible central target molecule in prostate cancer therapeutics.
Resumo:
In contemporary Western societies, the years between childhood and young adulthood are commonly understood to be (trans)formative in the reflexive project of sexual self-making (Russell et al. 2012). As sexual subjects in the making, youthful bodies, desires and sexual activities are often perceived as both volatile and vulnerable, thus subjected to instruction and discipline, protection and surveillance. Accordingly, young people’s sexual proximities are closely monitored by social institutions and ‘(hetero)normalising regimes’ (Warner 1999) for any signs that may compromise the end goal of development—a ‘normal’ reproductive heterosexual monogamous adult...
Resumo:
La creación del término resiliencia en salud es un paso importante hacia la construcción de comunidades más resilientes para afrontar mejor los desastres futuros. Hasta la fecha, sin embargo, parece que hay poca literatura sobre cómo el concepto de resiliencia en salud debe ser definido. Este artículo tiene como objetivo construir un enfoque de gestión de desastres de salud integral guiado por el concepto de resiliencia. Se realizaron busquedas en bases de datos electrónicas de salud para recuperar publicaciones críticas que pueden haber contribuido a los fines y objetivos de la investigación. Un total de 61 publicaciones se incluyeron en el análisis final de este documento, que se centraron en aquéllas que proporcionan una descripción completa de las teorías y definiciones de resiliencia ante los desastres y las que proponen una definición y un marco conceptual para la capacidad de resiliencia en salud. La resiliencia es una capacidad inherente de adaptación para hacer frente a la incertidumbre del futuro. Esto implica el uso de múltiples estrategias, un enfoque de riesgos máximos y tratar de lograr un resultado positivo a través de la vinculación y cooperación entre los distintos elementos de la comunidad. Resiliencia en salud puede definirse como la capacidad de las organizaciones de salud para resistir, absorber, y responder al impacto de los desastres, mientras mantiene las funciones esenciales y se recupera a su estado original o se adapta a un nuevo estado. Puede evaluarse por criterios como la robustez, la redundancia, el ingenio y la rapidez e incluye las dimensiones clave de la vulnerabilidad y la seguridad, los recursos y la preparación para casos de desastre, la continuidad de los servicios esenciales de salud, la recuperación y la adaptación. Este nuevo concepto define las capacidades en gestión de desastres de las organizaciones sanitarias, las tareas de gestión, actividades y resultados de desastres juntos en una visión de conjunto integral, y utiliza un enfoque integrado y con un objetivo alcanzable. Se necesita urgentemente investigación futura de su medición
Resumo:
Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.
Resumo:
Nanostructured high strength Mg-5%Al-x%Nd alloys were prepared by mechanical alloying. Microstructural characterization reveled average crystalline size to be about 30 nm after mechanical alloying while it increased to about 90 nm after sintering and extrusion. Mechanical properties showed increase in 0.2% yield stress, ultimate tensile strength was attributed to reduction in gain size as well as to the enhanced diffusion after mechanical activation. Although ultra high yield stress was observed from the specimen with 5% Nd, its ductility was reduced to about 1.6%.
Resumo:
In this work, nanocrystalline Mg-Al-Nd alloys were fabricated using mechanical alloying method. Phase structure of the extrided rods was examined using X-ray diffraction (XRD) and the microstructures were observed using transmission electronic microscopy (TEM). High yield strength was obtained in the alloys with a high Nd content due to grain refinement and Nd rich precipitate phase.
Resumo:
In recent years Australian Law Schools have implemented various forms of peer assisted learning or mentoring, including career mentoring by former students of final year students and orientation mentoring or tutoring by later year students of incoming first year students. The focus of these programs therefore is on the transition into or out of law school. There is not always as great an emphasis however, as part of this transition, on the use of law students belonging to the same unit cohort as a learning resource for each other within their degree. This is despite the claimed preference of Generation Y students for collaborative learning environments, authentic learning experiences and the development of marketable workplace skills. In the workplace, be it professional legal practice or otherwise, colleagues rely heavily on each other for information, support and guidance. In the undergraduate law degree at the Queensland University of Technology (‘QUT’) the Torts Student Peer Mentor Program aims to supplement a student’s understanding of the substantive law of torts with the development of life-long skills. As such it has the primary objective, albeit through discussion facilitated by more senior students, of encouraging first year students to develop for themselves the skills they need to be successful both as law students and as legal practitioners. Examples of such skills include those relevant to: preparation for assessment tasks; group work; problem solving, cognition and critical thinking; independent learning; and communication. Significantly, in this way, not only do the mentees benefit from involvement in the program, but the peer mentors, or program facilitators, themselves also benefit from their participation in the real world learning environment the program provides. This paper outlines the development and implementation of the above program, the pedagogy which influenced it, and its impact on student learning experiences
Resumo:
Analysis of bovine interphotoreceptor matrix and conditioned medium from human Y-79 retinoblastoma cells by gelatin SDS-PAGE zymography reveals abundant activity of a 72-kDa M(r) gelatinase. The 72-kDa gelatinase from either source is inhibited by EDTA but not aprotinin or NEM, indicating that it is a metalloproteinase (MMP). The 72-kDa MMP is converted to a 62-kDa species with APMA treatment after gelatin sepharose affinity purification typical of previously described gelatinase MMP-2. The latent 72-kDa gelatinase from either bovine IPM or Y-79 media autoactivates without APMA in the presence of calcium and zinc after 72 hr at 37°C, producing a fully active mixture of proteinase species, 50 (48 in Y-79 medium), 38 and 35 kDa in size. The presence of inhibitory activity was examined in both whole bovine IPM and IPM fractions separated by SDS-PAGE. Whole IPM inhibited gelatinolytic activity of autoactivated Y-79-derived MMP in a dose-dependent manner. Inhibitory activities are observed in two protein fractions of 27-42 and 20-25 kDa. Western blots using antibodies to human tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and -2) reveal the presence of two TIMP-1-like proteins at 21 and 29 kDa in inhibitory fractions of the bovine IPM. TIMP-2 was not detected in the inhibitory IPM fractions, consistent with the observed autoactivation of bovine IPM 72-kDa gelatinase. Potential roles for this IPM MMP-TIMP system include physiologic remodelling of the neural retina-RPE cell interface and digestion of shed rod outer segment as well as pathological processes such as retinal detachment, PE cell migration, neovascularization and tumor progression. Cultured Y-79 cells appear to be a good model for studying the production and regulation of this proteinase system.
Resumo:
An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.
Resumo:
A custom-designed inductively coupled plasma (ICP)-assisted radio-frequency magnetron sputtering deposition system has been employed to synthesize aluminium-doped zinc oxide (ZnO:Al) nanofilms on glass substrates at room temperature. The effects of film thickness and ZnO target (partially covered by Al chips) power on the structural, electrical and optical properties of the ZnO:Al nanofilms are studied. A high growth rate (∼41 nm/min), low electrical sheet resistance (as low as 30 Ω/□) and high optical transparency (>80%) over the visible spectrum has been achieved at a film thickness of ∼615 nm and ZnO target power of 150 W. The synthesis of ZnO:Al nanofilms at room temperature and with high growth rates is attributed to the unique features of the ICP-assisted radio-frequency magnetron sputtering deposition approach. The results are relevant to the development of photovoltaic thin-film solar cells and flat panel displays.
Resumo:
This article explores a number of social control strategies on individuals and families actioned by the newly created state-national project during the first decades of Colombian XIX century. With special attention on the discourse of urbanity, also named 'civility or good manners', this paper analyses literary sources produced in the time for molding citizens behaviors in order to incorporate the society into the new paradigm of Modernity.
Resumo:
Este proyecto se desarrollo por iniciativa de las autoras y con el apoyo de un grupo interdisciplinario, con el interés común de desarrollar una investigación académica cuyo resultado sea de utilidad para el desarrollo del sector productivo artesanal Peruano. El proceso de investigación nace a partir de una observación de campo acerca de la problemática del producto artesanal Peruana y enfocada en los aspectos comerciales, de diseño y producción. Esta observación se centro en Cajamarca (por ser el departamento menos intervenido por otras investigaciones en este tema) en la zona de Aylambo y Cruz Blanca, en los talleres artesanales que desarrollan productos cerámicos. A partir de un análisis de tipo FODA de los productos y de su contexto de desarrollo, encontramos que los artesanos que trabajan con los empresarios exportadores, requieren un tipo de capacitación que les permita desarrollar su trabajo mediante un proceso orientado a cumplir con exigencias técnicas y de diseño para el desarrollo de productos validos como oferta exportable. Como punto de partida se recurrió a las instituciones no gubernamentales y del gobierno, que promueven el sector artesanal Peruano (Prompex, Adex, Proyecto PARA, IMPART) para conocer su opinión respecto a los mercados objetivos de este sector, y para adoptar como parte del proyecto, lo vigente respecto a las políticas y planes de comercialización. Para entender la contraparte comercial de este sector artesanal recurrimos a empresas privadas exportadoras con muchos años de experiencia, para ello contamos con la colaboración de empresas como Allpa, Manos Amigas, Novica. A partir de la observación de campo preliminar y de la información recogida de los expertos consultados, se realizo un diagnostico de la situación productiva en este sector. En base a la definición del problema, se establecieron las estrategias y metodologías para el diseño de la investigación, siendo parte de estas estrategias, la realización de un taller de desarrollo de productos en Cajamarca. Las estrategias tuvieron como enfoque principal la definición de metodologías de trabajo, cuya aplicación sea posible en el marco del contexto económico, político y cultural en el que se desarrolla este sector en la realidad inmediata del país. El proyecto culmina con la presentación de una propuesta que mas allá de abarcar únicamente lo metodológico en el área del diseño, presenta también ‘modelos’ de trabajo entre los diferentes actores que intervienen en el sector, de manera que a través de estrategias colaborativas se pueda potenciar el crecimiento del sector y beneficiar el desarrollo del artesano.