652 resultados para Work-Based Learning
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
Introduction The European Foundation for the improvement of living and working conditions conducts a survey every 5 years since 1990. The foundation also offers the possibility to non-EU countries to be included in the survey: in 2005, Switzerland took part for the first time in the fourth edition of this survey. The Institute for Work and Health (IST) has been associated to the Swiss project conducted under the leadership of the SECO and the Fachhochschule Nordwestschweiz. The survey covers different aspects of work like job characteristics and employment conditions, health and safety, work organization, learning and development opportunities, and the balance between working and non-working life (Parent-Thirion, Fernandez Macias, Hurley, & Vermeylen, 2007). More particularly, one question assesses the worker's self-perception of the effects of work on health. We identified (for the Swiss sample) several factors affecting the risk to report health problems caused by work. The Swiss sample includes 1040 respondents. Selection of participants was based on a random multi-stage sampling and was carried out by M.I.S Trend S.A. (Lausanne). Participation rate was 59%. The database was weighted by household size, gender, age, region of domicile, occupational group, and economic sector. Specially trained interviewers carried out the interviews at the respondents home. The survey was carriedout between the 19th of September 2005 and the 30th of November 2005. As detailed in (Graf et al., 2007), 31% of the Swiss respondents identify work as the cause of health problems they experience. Most frequently reported health problems include back pain (18%), stress (17%), muscle pain (13%), and overall fatigue (11%). Ergonomic aspects associated with higher risk of reporting health problems caused by work include frequent awkward postures (odds ratio [OR] 4.7, 95% confidence interval [CI] 3.1 to 5.4), tasks involving lifting heavy loads (OR 2.7, 95% CI 2.0 to 3.6) or lifting people (OR 2.2, 95% CI 1.4 to 3.5), standing or walking (OR 1.4, 95% CI 1.1 to 1.9), as well as repetitive movements (OR 1.7, 95% CI 1.3 to 2.3). These results highlight the need to continue and intensify the prevention of work related health problems in occupations characterized by risk factors related to ergonomics.
Resumo:
Two important challenges that teachers are currently facing are the sharing and the collaborative authoring of their learning design solutions, such as didactical units and learning materials. On the one hand, there are tools that can be used for the creation of design solutions and only some of them facilitate the co-edition. However, they do not incorporate mechanisms that support the sharing of the designs between teachers. On the other hand, there are tools that serve as repositories of educational resources but they do not enable the authoring of the designs. In this paper we present LdShake, a web tool whose novelty is focused on the combined support for the social sharing and co-edition of learning design solutions within communities of teachers. Teachers can create and share learning designs with other teachers using different access rights so that they can read, comment or co-edit the designs. Therefore, each design solution is associated to a group of teachers able to work on its definition, and another group that can only see the design. The tool is generic in that it allows the creation of designs based on any pedagogical approach. However, it can be particularized in instances providing pre-formatted designs structured according to a specific didactic method (such as Problem-Based Learning, PBL). A particularized LdShake instance has been used in the context of Human Biology studies where teams of teachers are required to work together in the design of PBL solutions. A controlled user study, that compares the use of a generic LdShake and a Moodle system, configured to enable the creation and sharing of designs, has been also carried out. The combined results of the real and controlled studies show that the social structure, and the commenting, co-edition and publishing features of LdShake provide a useful, effective and usable approach for facilitating teachers' teamwork.
Resumo:
Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.
Resumo:
Peer-reviewed
Resumo:
This study investigates the transformation of practical teaching in a Catalan school, connected to the design, implementation and development of project-based learning, and focusing on dialogic learning to investigate its limits and possibilities. Qualitative and design-based research (DBR) methods are applied. These methods are based on empirical educational research with the theory-driven of learning environments. DBR is proposed and applied using practical guidance for the teachers of the school. It can be associated with the current proposals for Embedding Social Sciences and Humanities in the Horizon 2020 Societal Challenges. This position statement defends the social sciences and the humanities as the most fundamental and important ideas to face all societal challenges. The results of this study show that before the training process, teachers apply dialogic learning in specific moments (for example, when they speak about the weekend); however, during the process and after the process, they work systematically with dialogic learning through the PEPT: they start and finish every activity with a individual and group reflection about their own processes, favouring motivation, reasoning and the implication of all the participants. These results prove that progressive transformations of teaching practice benefit cooperative work in class
Resumo:
This paper stresses the importance of developing mathematical thought in young children based on everyday contexts, since these are meaningful learning situations with an interdisciplinary, globalised focus. The first part sets out the framework of reference that lays the theoretical foundations for these kinds of educational practices. The second part gives some teaching orientations for work based on everyday contexts. It concludes with the presentation of the activity 'We’re off to the cinema to learn mathematics!'
Resumo:
The general aim of the thesis was to study university students’ learning from the perspective of regulation of learning and text processing. The data were collected from the two academic disciplines of medical and teacher education, which share the features of highly scheduled study, a multidisciplinary character, a complex relationship between theory and practice and a professional nature. Contemporary information society poses new challenges for learning, as it is not possible to learn all the information needed in a profession during a study programme. Therefore, it is increasingly important to learn how to think and learn independently, how to recognise gaps in and update one’s knowledge and how to deal with the huge amount of constantly changing information. In other words, it is critical to regulate one’s learning and to process text effectively. The thesis comprises five sub-studies that employed cross-sectional, longitudinal and experimental designs and multiple methods, from surveys to eye tracking. Study I examined the connections between students’ study orientations and the ways they regulate their learning. In total, 410 second-, fourth- and sixth-year medical students from two Finnish medical schools participated in the study by completing a questionnaire measuring both general study orientations and regulation strategies. The students were generally deeply oriented towards their studies. However, they regulated their studying externally. Several interesting and theoretically reasonable connections between the variables were found. For instance, self-regulation was positively correlated with deep orientation and achievement orientation and was negatively correlated with non-commitment. However, external regulation was likewise positively correlated with deep orientation and achievement orientation but also with surface orientation and systematic orientation. It is argued that external regulation might function as an effective coping strategy in the cognitively loaded medical curriculum. Study II focused on medical students’ regulation of learning and their conceptions of the learning environment in an innovative medical course where traditional lectures were combined wth problem-based learning (PBL) group work. First-year medical and dental students (N = 153) completed a questionnaire assessing their regulation strategies of learning and views about the PBL group work. The results indicated that external regulation and self-regulation of the learning content were the most typical regulation strategies among the participants. In line with previous studies, self-regulation wasconnected with study success. Strictly organised PBL sessions were not considered as useful as lectures, although the students’ views of the teacher/tutor and the group were mainly positive. Therefore, developers of teaching methods are challenged to think of new solutions that facilitate reflection of one’s learning and that improve the development of self-regulation. In Study III, a person-centred approach to studying regulation strategies was employed, in contrast to the traditional variable-centred approach used in Study I and Study II. The aim of Study III was to identify different regulation strategy profiles among medical students (N = 162) across time and to examine to what extent these profiles predict study success in preclinical studies. Four regulation strategy profiles were identified, and connections with study success were found. Students with the lowest self-regulation and with an increasing lack of regulation performed worse than the other groups. As the person-centred approach enables us to individualise students with diverse regulation patterns, it could be used in supporting student learning and in facilitating the early diagnosis of learning difficulties. In Study IV, 91 student teachers participated in a pre-test/post-test design where they answered open-ended questions about a complex science concept both before and after reading either a traditional, expository science text or a refutational text that prompted the reader to change his/her beliefs according to scientific beliefs about the phenomenon. The student teachers completed a questionnaire concerning their regulation and processing strategies. The results showed that the students’ understanding improved after text reading intervention and that refutational text promoted understanding better than the traditional text. Additionally, regulation and processing strategies were found to be connected with understanding the science phenomenon. A weak trend showed that weaker learners would benefit more from the refutational text. It seems that learners with effective learning strategies are able to pick out the relevant content regardless of the text type, whereas weaker learners might benefit from refutational parts that contrast the most typical misconceptions with scientific views. The purpose of Study V was to use eye tracking to determine how third-year medical studets (n = 39) and internal medicine residents (n = 13) read and solve patient case texts. The results revealed differences between medical students and residents in processing patient case texts; compared to the students, the residents were more accurate in their diagnoses and processed the texts significantly faster and with a lower number of fixations. Different reading patterns were also found. The observed differences between medical students and residents in processing patient case texts could be used in medical education to model expert reasoning and to teach how a good medical text should be constructed. The main findings of the thesis indicate that even among very selected student populations, such as high-achieving medical students or student teachers, there seems to be a lot of variation in regulation strategies of learning and text processing. As these learning strategies are related to successful studying, students enter educational programmes with rather different chances of managing and achieving success. Further, the ways of engaging in learning seldom centre on a single strategy or approach; rather, students seem to combine several strategies to a certain degree. Sometimes, it can be a matter of perspective of which way of learning can be considered best; therefore, the reality of studying in higher education is often more complicated than the simplistic view of self-regulation as a good quality and external regulation as a harmful quality. The beginning of university studies may be stressful for many, as the gap between high school and university studies is huge and those strategies that were adequate during high school might not work as well in higher education. Therefore, it is important to map students’ learning strategies and to encourage them to engage in using high-quality learning strategies from the beginning. Instead of separate courses on learning skills, the integration of these skills into course contents should be considered. Furthermore, learning complex scientific phenomena could be facilitated by paying attention to high-quality learning materials and texts and other support from the learning environment also in the university. Eye tracking seems to have great potential in evaluating performance and growing diagnostic expertise in text processing, although more research using texts as stimulus is needed. Both medical and teacher education programmes and the professions themselves are challenging in terms of their multidisciplinary nature and increasing amounts of information and therefore require good lifelong learning skills during the study period and later in work life.
Resumo:
This exploratory descriptive study described what 20 care providers in 5 long-term care facilities perceived to aid or hinder their learning in a work-sponsored learning experience. A Critical Incident Technique (Woolsey, 1986) was the catalyst for the interviews with the culturally and professionally diverse participants. Through data analysis, as described by Moustakas (1994), I found that (a) humour, (b) the learning environment, (c) specific characteristics of the presenter such as moderate pacing, speaking slowly and with simple words, (d) decision-making authority, (e) relevance to practice, and (f) practical applications best met the study participants' learning needs. Conversely, other factors could hinder learning based on the participants' perceptions. These were: (a) other presenter characteristics such as a program that was delivered quickly or spoken at a level above the participants' comprehension, (b) no perceived relevance to practice, (c), other environmental situations, and (d) the timing of the learning session. One of my intentions was to identify the emic view among cultural groups and professional/vocational affiliations. A surprising finding of this study was that neither impacted noticeably on the perceived learning needs of the participants. Further research with a revised research design to facilitate inclusion of more diverse participants will aid in determining if the lack of a difference was unique to this sample or more generalizable on a case-to-case transfer basis to the study population.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.
Resumo:
Since the Dearing Report .1 there has been an increased emphasis on the development of employability and transferable (‘soft’) skills in undergraduate programmes. Within STEM subject areas, recent reports concluded that universities should offer ‘greater and more sustainable variety in modes of study to meet the changing demands of industry and students’.2 At the same time, higher education (HE) institutions are increasingly conscious of the sensitivity of league table positions on employment statistics and graduate destinations. Modules that are either credit or non-credit bearing are finding their way into the core curriculum at HE. While the UK government and other educational bodies argue the way forward over A-level reform, universities must also meet the needs of their first year cohorts in terms of the secondary to tertiary transition and developing independence in learning.
Resumo:
The goal of primary science education is to foster children’s interest, develop positive science attitudes and promote science process skills development. Learning by playing and discovering provides several opportunities for children to inquiry and understand science based on the first–hand experience. The current research was conducted in the children’s laboratory in Heureka, the Finnish science centre. Young children (aged 7 years) which came from 4 international schools did a set of chemistry experiments in the laboratory. From the results of the cognitive test, the pre-test, the post-test, supported by observation and interview, we could make the conclusion that children enjoyed studying in the laboratory. Chemistry science was interesting and fascinating for young children; no major gender differences were found between boys and girls learning in the science laboratory. Lab work not only encouraged children to explore and investigate science, but also stimulated children’s cognitive development.
Resumo:
In this article, we refine a politics of thinking from the margins by exploring a pedagogical model that advances transformative notions of service learning as social justice teaching. Drawing on a recent course we taught involving both incarcerated women and traditional college students, we contend that when communication among differentiated and stratified parties occurs, one possible result is not just a view of the other but also a transformation of the self and other. More specifically, we suggest that an engaged feminist praxis of teaching incarcerated women together with college students helps illuminate the porous nature of fixed markers that purport to reveal our identities (e.g., race and gender), to emplace our bodies (e.g., within institutions, prison gates, and walls), and to specify our locations (e.g., cultural, geographic, socialeconomic). One crucial theoretical insight our work makes clear is that the model of social justice teaching to which we aspired necessitates re-conceptualizing ourselves as students and professors whose subjectivities are necessarily relational and emergent.