978 resultados para Winds
Resumo:
Solitary waves have been found in an adiabatic compressible atmosphere which, in ambient state, has winds and temperature gradient, generalizing our earlier results for the isothermal atmosphere. Explicit results are obtained for the special case of linear temperature and linear wind distributions in the undisturbed conditions. An important result of the study is that the number of possible critical speeds of the flow depends crucially on whether the maximum Richardson number (which is variable in the present example) is greater or less than 1/4.
Resumo:
The philosophical problem of self-deception focuses the relation between desire, advantage, evidence and harm. A self-deceptive person is irrational because he or she belives or wants to belive contrary to the available evidence. The study focuses on different forms of self-deception that come out in certain classical Western dramas. The first self-deception forms are: "S knows that ~p but still belives that p because he wants that ~p", "S wants that p and therefore belives that p.", "S belives that p against evidence t because he wants to belive that p.", "S belives that p if t but S would belive that p even if ~t because S wants to belive that p.", "S belives that p (even if there is t that ~p) because S is ignorant of it." and "S belives that p (even if there is t that ~p) because of ignorant of t due to an internal deception." The main sources on self-deception are the views of contemporary researchers of the subject, such as Robert Audi, Marcia Baron, Bas C. van Fraassen, Mark Johnston, Mike W. Martin, Brian MaLaughlin, Alfred Mele, Amélie Oksenberg Rorty, William Ruddick and Stephen L. White. In this study it is claimed that Shakespeare´s Othello presents self-deception as a tragic phenomenom from witch it follows deceptions and murders. Moliére´s Tartuffe deals with a phony hypocrite´s attempts at cheating. Ibsen´s Wild Duck defends the necessity of vital lies. Beckett´s Waiting for Godot deals with the self-deception witch is related to the waiting of the supernatural rescuer. Miller´s The Death of a Salesman tells about a man who, while pursuing the American myth of success, winds both himself and his family into the skeins of self-deception. They are studied with a Barthesian method that emphasizes the autonomy of literary work and its interpretation independently of the author´s personal history and social conditions. Self-deception has been regarded as an immoral way of thinking or way of action. However, vital lies show the necessity or necessity of the self-deception when it brings joy and optimism to the human being and supports his or her self-esteem and does not cause a suffering or damage, either to self or others. In the study, the processual character of self-deception is brought out.
Resumo:
The sea level pressure (SLP) variability in 30-60 day intraseasonal timescales is investigated using 25 years of reanalysis data addressing two issues. The first concerns the non-zero zonal mean component of SLP near the equator and its meridional connections, and the second concerns the fast eastward propagation (EP) speed of SLP compared to that of zonal wind. It is shown that the entire globe resonates with high amplitude wave activity during some periods which may last for few to several months, followed by lull periods of varying duration. SLP variations in the tropical belt are highly coherent from 25A degrees S to 25A degrees N, uncorrelated with variations in mid latitudes and again significantly correlated but with opposite phase around 60A degrees S and 65A degrees N. Near the equator (8A degrees S-8A degrees N), the zonal mean contributes significantly to the total variance in SLP, and after its removal, SLP shows a dominant zonal wavenumber one structure having a periodicity of 40 days and EP speeds comparable to that of zonal winds in the Indian Ocean. SLP from many of the atmospheric and coupled general circulation models show similar behaviour in the meridional direction although their propagation characteristics in the tropical belt differ widely.
Resumo:
[1] The equatorial Indian Ocean (EIO) exhibited anomalous conditions characteristic of an Indian Ocean dipole (IOD) during 2006. The eastern EIO had cold sea surface temperature anomalies (SSTA), lower sea level, shallow thermocline and higher chlorophyll than normal. The anomalies in the east, restricted to the south of the equator, were highest off Sumatra. The western pole of the IOD was marked by warm SSTA and deeper thermocline with maxima on either side of the equator. An ocean general circulation model of the Indian Ocean forced by QuikSCAT winds reproduces the IOD of 2006 remarkably well. The switch over to cooling in the east and warming in the west happened during May and July respectively. In the east, airsea heat flux initiated cold SSTA in the model which were sustained later by oceanic processes. In the west, surface heat fluxes and horizontal advection caused warm SSTA and contribution by the latter decreased after August. Citation: Vinayachandran, P. N., J. Kurian, and C. P. Neema (2007), Indian Ocean response to anomalous conditions in 2006, Geophys. Res. Lett., 34, L15602, doi:10.1029/2007GL030194.
Resumo:
The equatorial Indian Ocean (EIO) exhibited anomalous conditions characteristic of an Indian Ocean dipole (IOD) during 2006. The eastern EIO had cold sea surface temperature anomalies (SSTA), lower sea level, shallow thermocline and higher chlorophyll than normal. The anomalies in the east, restricted to the south of the equator, were highest off Sumatra. The western pole of the IOD was marked by warm SSTA and deeper thermocline with maxima on either side of the equator. An ocean general circulation model of the Indian Ocean forced by QuikSCAT winds reproduces the IOD of 2006 remarkably well. The switch over to cooling in the east and warming in the west happened during May and July respectively. In the east, air-sea heat flux initiated cold SSTA in the model which were sustained later by oceanic processes. In the west, surface heat fluxes and horizontal advection caused warm SSTA and contribution by the latter decreased after August.
Resumo:
An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.
Resumo:
The mid-December 2006 to late January 2007 flood in southern Peninsular Malaysia was the worst flood in a century and was caused by three extreme precipitation episodes. These extreme precipitation events were mainly associated with strong northeasterly winds over the South China Sea. In all cases, the northeasterlies penetrated anomalously far south and followed almost a straight trajectory. The elevated terrain over Sumatra and southern Peninsular Malaysia caused low-level convergence. The strong easterly winds near Java associated with the Rossby wave-type response to Madden-Julian Oscillation (MJO) inhibited the counter-clockwise turning of the northeasterlies and the formation of the Borneo vortex, which, in turn, enhanced the low-level convergence over the region. The abrupt termination of the Indian Ocean Dipole (IOD) in December 2006 played a secondary role as warmer equatorial Indian Ocean helped in the MJO formation.
Resumo:
Snow cover is very sensitive to climate change and has a large feedback effect on the climate system due to the high albedo. Snow covers almost all surfaces in Antarctica and small changes in snow properties can mean large changes in absorbed radiation. In the ongoing discussion of climatic change, the mass balance of Antarctica has received increasing focus during recent decades, since its reaction to global warming strongly influences sea-level change. The aim of the present work was to examine the spatial and temporal variations in the physical and chemical characteristics of surface snow and annual accumulation rates in western Dronning Maud Land, Antarctica. The data were collected along a 350-km-long transect from the coast to the plateau during the years 1999-2004 as a part of the Finnish Antarctic Research Programme (FINNARP). The research focused on the most recent annual accumulation in the coastal area. The results show that the distance from the sea, and the moisture source, was the most predominant factor controlling the variations in both physical (conductivity, grain size, oxygen isotope ratio and accumulation) and chemical snow properties. The sea-salt and sulphur-containing components predominated in the coastal region. The local influences of nunataks and topographic highs were also visible on snow. The variations in all measured properties were wide within single sites mostly due to redistribution by winds and sastrugi topography, which reveals the importance of the spatially representative measurements. The mean accumulations occurred on the ice shelf, in the coastal region and on the plateau: 312 ± 28, 215 ± 43 and 92 ± 25 mm w.e., respectively. Depth hoar layers were usually found under the thin ice crust and were associated with a low dielectric constant and high concentrations of nitrate. Taking into account the vast size of the Antarctic ice sheet and its geographic characteristics, it is important to extend investigation of the distribution of surface snow properties and accumulation to provide well-documented data.
Resumo:
The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.
Resumo:
Before the onset of the south Asian summer monsoon, sea surface temperature (SST) of the north Indian Ocean warms to 30–32°C. Climatological mean mixed layer depth in spring (March–May) is 10–20 m, and net surface heat flux (Q net ) is 80–100 W m−2 into the ocean. Previous work suggests that observed spring SST warming is small mainly because of (1) penetrative flux of solar radiation through the base of the mixed layer (Q pen ) and (2) advective cooling by upper ocean currents. We estimate the role of these two processes in SST evolution from a two-week Arabian Sea Monsoon Experiment process experiment in April–May 2005 in the southeastern Arabian Sea. The upper ocean is stratified by salinity and temperature, and mixed layer depth is shallow (6 to 12 m). Current speed at 2 m depth is high even under light winds. Currents within the mixed layer are quite distinct from those at 25 m. On subseasonal scales, SST warming is followed by rapid cooling, although the ocean gains heat at the surface: Q net is about 105 W m−2 in the warming phase and 25 W m−2 in the cooling phase; penetrative loss Q pen is 80 W m−2 and 70 W m−2. In the warming phase, SST rises mainly because of heat absorbed within the mixed layer, i.e., Q net minus Q pen ; Q pen reduces the rate of SST warming by a factor of 3. In the second phase, SST cools rapidly because (1) Q pen is larger than Q net and (2) advective cooling is ∼85 W m−2. A calculation using time-averaged heat fluxes and mixed layer depth suggests that diurnal variability of fluxes and upper ocean stratification tends to warm SST on subseasonal timescale. Buoy and satellite data suggest that a typical premonsoon intraseasonal cooling event occurs under clear skies when the ocean is gaining heat through the surface. In this respect, premonsoon SST cooling in the north Indian Ocean is different from that due to the Madden-Julian oscillation or monsoon intraseasonal oscillation.
Resumo:
During the second phase of the Arabian Sea Monsoon Experiment (ARMEX-II), extensive measurements of spectral aerosol optical depth, mass concentration, and mass size distribution of ambient aerosols as well as mass concentration of aerosol black carbon (BC) were made onboard a research vessel during the intermonsoon period (i.e., when the monsoon winds are in transition from northeasterlies to westerlies/ southwesterlies) over the Arabian Sea (AS) adjoining the Indian Peninsula. Simultaneous measurements of spectral aerosol optical depths (AODs) were made at different regions over the adjoining Indian landmass. Mean AODs (at 500-nm wavelength) over the ocean (similar to0.44) were comparable to those over the coastal land (similar to0.47), but were lower than the values observed over the plateau regions of central Indian Peninsula (similar to0.61). The aerosol properties were found to respond distinctly with respect to change in the trajectories, with higher optical depths and flatter AOD spectra associated with trajectories indicating advection from west Asia, and northwest and west-coastal India. On average, BC constituted only similar to2.2% to total aerosol mass compared to the climatological values of similar to6% over the coastal land during the same season. These data are used to characterize the physical properties of aerosols and to assess the resulting short-wave direct aerosol forcing. The mean values were similar to27 W m(-2) at the surface and -12 W m(-2) at the top of the atmosphere (TOA), resulting in a net atmospheric forcing of +15 W m(-2). The forcing also depended on the region from where the advection predominates. The surface and atmospheric forcing were in the range -40 to -57 W m(-2) and +27 to +39 W m(-2), respectively, corresponding to advection from the west Asian and western coastal India where they were as low as -19 and +10 W m(-2), respectively, when the advection was mainly from the Bay of Bengal and from central/peninsular India. In all these cases, the net atmospheric forcing (heating) efficiency was lower than the values reported for northern Indian Ocean during northern winter, which is attributed to the reduced BC mass fraction.
Resumo:
An examination of the data available at 22 meteorological stations in Karnataka State shows that wind velocities in the State as a whole are neither spectacularly high nor negligibly low. The highest winds (annual mean of around 13 km/hr) are experienced in parts of the northern maidan region of the State (Gulbarga, Raichur and Bidar districts) and in Bangalore. The winds are strongly seasonal: typically, the five monsoon months May-September account for about 80% of the annual wind energy flux. Although the data available are inadequate to make precise estimates, they indicate that the total wind energy potential of the State is about an order of magnitude higher than the current electrical energy consumption. The possible exploitation of wind energy for applications in rural areas therefore requires serious consideration, but it is argued that to be successful it is essential to formulate an integrated and carefully planned programme. The output of current windpumps needs to be increased; a doubling should be feasible by the design of suitable load-matching devices. The first cost has to be reduced by careful design, by the use of local materials and skills and by employing a labour-intensive technology. A consideration of the agricultural factors in the northern maidan region of the State shows that there is likely to be a strong need for mechanical assistance in supplemental and life-saving irrigation for the dry crops characteristic of the area. A technological target for a windmill that could find applications in this area would be one with a rotor diameter of about 10 m that can lift about 10,000 litres of water per hour in winds of 10 km/hr (2.8 m/s) hourly average speed and costs less than about Rs 10,000. Although no such windmills exist as of today, the authors believe that achievement of this target is feasible. An examination of various possible scenarios for the use of windmills in this area suggests that with a windpump costing about Rs 12,000, a three hectare farm growing two dry crops a year can expect an annual return of about 150% from an initial investment of about Rs 15,000. It is concluded that it should be highly worthwhile to undertake a coordinated programme for wind energy development that will include more detailed wind surveys in the northern maidan area (as well as some others, such as the Western Ghats), the development of suitable windmill designs and a study of their applications to agriculture as well as to other fields.
A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis
Resumo:
An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.
Resumo:
Long-range transport of continental dust makes these particles a significant constituent even at locations far from their sources. It is important to study the temporal variations in dust loading over desert regions and the role of meteorology, in order to assess its radiative impact. In this paper, infrared radiance (10.5-12.5 mu m), acquired by the METEOSAT-5 satellite (similar to 5-km resolution) during 1999 and 2003 was used to quantify wind dependence of dust aerosols and to estimate the radiative forcing. Our analysis shows that the frequency of occurrence of dust events was higher during 2003 compared to 1999. Since the dust production function depends mainly on the surface wind speed over regions which are dry and without vegetation, the role of surface wind on IDDI was examined in detail. It was found that an increase of IDDI with wind speed was nearly linear and the rate of increase in IDDI with surface wind was higher during 2003 compared to 1999. It was also observed that over the Indian desert, when wind speed was the highest during monsoon months (June to August), the dust production rate was lower because of higher soil moisture (due to monsoon rainfall). Over the Arabian deserts, when the wind speed is the highest during June to August, the dust production rate is also highest, as soil moisture is lowest during this season. Even though nothing can be said precisely on the reason why 2003 had a greater number of dust events, examination of monthly mean soil moisture at source regions indicates that the occurrence of high winds simultaneous with high soil moisture could be the reason for the decreased dust production efficiency in 1999. It appears that the deserts of Northwest India are more efficient dust sources compared to the deserts of Saudi Arabia and Northeast Africa (excluding Sahara). The radiative impact of dust over various source regions is estimated, and the regionally and annually averaged top of the atmosphere dust radiative forcing (short wave, clear-sky and over land) over the entire study region (0-35 degrees N; 30 degrees-100 degrees E) was in the range of -0.9 to +4.5 W m(-2). The corresponding values at the surface were in the range of -10 to -25 W m(-2). Our studies demonstrate that neglecting the diurnal variation of dust can cause errors in the estimation of long wave dust forcing by as much as 50 to 100%, and nighttime retrieval of dust can significantly reduce the uncertainties. A method to retrieve dust aerosols during nighttime is proposed. The regionally and annually averaged long wave dust radiative forcing was +3.4 +/- 1.6 W m(-2).
Resumo:
Making use of aerosol optical depths (AOD) derived from MODIS (onboard TERRA satellite) and winds from NCEP, and the fact that sea-salt optical depth over ocean is determined primarily by sea-surface wind speed, we examine the contribution of sea-salt to the composite aerosol optical depth ( AOD) over Arabian Sea ( AS), by developing empirical models for characterizing wind-speed dependence of sea-salt optical depth. We show that at high wind speeds, sea-salt contributes 81% to the coarse mode and 42% to the composite AOD in the southern AS. In contrast to this, over the northern AS, share of sea-salt to coarse mode and composite optical depth is only 35% and 16% respectively. Comparison of the sea-salt optical depth and coarse mode optical depth ( MODIS) showed excellent agreement. The sea-salt optical depth over AS at moderate to high wind speed is comparable to the anthropogenic AOD reported for this region during winter.