990 resultados para Wiener-Hopf operator
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we studied a non-ideal system with two degrees of freedom consisting of a dumped nonlinear oscillator coupled to a rotatory part. We investigated the stability of the equilibrium point of the system and we obtain, in the critical case, sufficient conditions in order to obtain an appropriate Normal Form. From this, we get conditions for the appearance of Hopf Bifurcation when the difference between the driving torque and the resisting torque is small. It was necessary to use the Bezout Theorem, a classical result of Algebraic Geometry, in the obtaining of the foregoing results. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study codimension-one Hopf bifurcation from symmetric equilibrium points in reversible equivariant vector fields. Such bifurcations are characterized by a doubly degenerate pair of purely imaginary eigenvalues of the linearization of the vector field at the equilibrium point. The eigenvalue movements near such a degeneracy typically follow one of three scenarios: splitting (from two pairs of imaginary eigenvalues to a quadruplet on the complex plane), passing (on the imaginary axis), or crossing (a quadruplet crossing the imaginary axis). We give a complete description of the behaviour of reversible periodic orbits in the vicinity of such a bifurcation point. For non-reversible periodic solutions. in the case of Hopf bifurcation with crossing eigenvalues. we obtain a generalization of the equivariant Hopf Theorem.
Resumo:
We consider the dynamics of a system of interacting spins described by the Ginzburg-Landau Hamiltonian. The method used is Zwanzig's version of the projection-operator method, in contrast to previous derivations in which we used Mori's version of this method. It is proved that both methods produce the same answer for the Green's function. We also make contact between the projection-operator method and critical dynamics.
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-known q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity.
Resumo:
We write the BRST operator of the N = 1 superstring as, Q = e-R(1/2πiφdzγ2b)eR where y and b are super-reparameterization ghosts. This provides a trivial proof that Q is nilpotent. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Using the pure spinor formalism for the superstring, the vertex operator for the first massive states of the open superstring is constructed in a manifestly super-Poincaré covariant manner. This vertex operator describes a massive spin-two multiplet in terms of ten-dimensional superfields. © SISSA/ISAS 2002.
Resumo:
We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.
Resumo:
We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.
Resumo:
We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
Resumo:
In the study of the Type II superstring, it is useful to consider the BRST complex associated to the sum of two pure spinors. The cohomology of this complex is an infinite-dimensional vector space. It is also a finite-dimensional algebra over the algebra of functions of a single pure spinor. In this paper we study the multiplicative structure. © 2013 World Scientific Publishing Company.