309 resultados para Wettability
Resumo:
Polypropylene (PP) samples were treated by Dielectric Barrier Discharge (DBD) in order to modify their surface characteristics. The XPS analysis reveals that the DBD treatment added oxygen atoms to the PP surface. These polar groups cause increase in the wettability as shown by water contact angle measurements. The formation of low-molecular-weight oxidized materials (LMWOMs) in the form of small nodules on the PP surface was observed by atomic force microscopy (AFM). The presence of oxygen polar groups on the PP surface was also confirmed by infrared spectroscopy (FTIR). All analysis were performed before and after rinsing the treated samples in water and showed that the LMWOM can be removed from the surface by polar solvents.
Resumo:
The main goal in this work is to conduct a quantitative analysis of the mechanical stir casting process for obtaining particulate metal matrix composites. A combined route of stirring at semi-solid state followed by stirring at liquid state is proposed. A fractional factorial design was developed to investigate the influence and interactions of factors as: time, rotation, initial fraction and particle size, on the incorporated fraction. The best incorporations were obtained with all factors at high levels, as well as that very long stirring periods have no strong influence being particle size and rotation the most important factors on the incorporated fraction. Particle wetting occurs during stirring at semisolid state, highlighting the importance of the interactions between particles and the alloy globularized phase. The role of the alloying element Mg as a wettability-promoting agent is discussed. The shear forces resulting from the stirring system is emphasized and understood as the effect of rotation itself added to the propeller blade geometry.
Resumo:
Corrosion usually occurs in pipelines, so that it is necessary to develop new surface treatments to control it. Surfactants have played an outstanding role in this field due to its capacity of adsorbing on metal surfaces, resulting in interfaces with structures that protect the metal at low surfactant concentrations. The appearance of new surfactants is a contribution to the area, as they increase the possibility of corrosion control at specific conditions that a particular oil field presents. The aim of this work is to synthesize the surfactants sodium 12 hydroxyocadecenoate (SAR), sodium 9,10-epoxy-12 hydroxyocadecanoate (SEAR), and sodium 9,10:12,13-diepoxy-octadecanoate (SEAL) and apply them as corrosion inhibitors, studying their action in environments with different salinities and at different temperatures. The conditions used in this work were chosen in order to reproduce oil field reality. The study of the micellization of these surfactants in the liquid-gas interface was carried out using surface tensiometry. It was observed that cmc increased as salt concentration was increased, and temperature and pH were decreased, while cmc decreased with the addition of two epoxy groups in the molecule. Using the values of cmc and the Gibbs equation, the values of Gibbs free energy of adsorption, area per adsorbed molecule, and surface excess were calculated. The surface excess increases as salt concentration and temperature decreases, increasing as pH is increased. The area per adsorbed molecule and the free energy of adsorption decrease with salt concentration, temperature, and pH increase. SAXS results showed that the addition of epoxy group in surfactant structure results in a decrease in the repulsion between the micelles, favoring the formation of more oblong micellar structures, ensuring a better efficiency of metal coverage. The increase in salt and surfactant concentrations provides an increase in micellar diameter. It was shown that the increase in temperature does not influence micellar structure, indicating thermal stability that is advantageous for use as corrosion inhibitor. The results of inhibition efficiency for the surfactants SEAR and SEAL were considered the best ones. Above cmc, adsorption occurred by the migration of micelles from the bulk of the solution to the metal surface, while at concentrations below cmc film formation must be due to the adsorption of semi-micellar and monomeric structures, certainly due to the presence of the epoxy group, which allows side interactions of the molecule with the metal surface. The metal resistance to corrosion presented values of 90% of efficiency. The application of Langmuir and Frumkin isotherms showed that the later gives a better description of adsorption because the model takes into account side interactions from the adsorbing molecules. Wettability results showed that micelle formation on the solid surface occurs at concentrations in the magnitude of 10-3 M, which isthe value found in the cmc study. This value also justifies the maximum efficiencies obtained for the measurements of corrosion resistance at this concentration. The values of contact angle as a function of time suggest that adsorption increases with time, due to the formation of micellar structures on metal surface
Resumo:
A desinfecção de todo e qualquer molde obtido é medida de biossegurança obrigatória na atividade clínica. Tão importante quanto a desinfecção é a seleção do método e da solução desinfetante a ser utilizada para cada material de moldagem. É imperativo que a capacidade de reprodução de detalhes, a estabilidade dimensional e o grau de umedecimento (ou molhabilidade) não sejam criticamente afetados. O propósito deste trabalho foi avaliar o grau de umedecimento de uma marca comercial de poliéter (Impregum F) por três diferentes marcas comerciais de gesso tipo IV (Herostone, Durone e Polirock), após sua desinfecção por aerossóis de hipoclorito de sódio 1% (líquido de Milton) ou glutaraldeído 2% (Glutalabor II). Foram confeccionados 45 moldes de poliéter, os quais, em grupos de 15, receberam aerossóis de água (Grupo Controle), Líquido de Milton ou Glutalabor II. em seguida, sobre a superfície dos moldes foram confeccionados modelos de gesso tipo IV, em número de 5 para cada marca de gesso. Após seu seccionamento mediano e preparo da superfície de corte, os modelos foram levados ao microscópio Carl Zeiss para leitura do ângulo de contato. Os resultados obtidos permitiram concluir que: a) a capacidade de umedecimento do poliéter por diferentes marcas comerciais de gesso tipo IV variou para os gessos estudados; b) o gesso Durone adaptou-se melhor aos moldes de poliéter do que os gessos Herostone e Polirock; c) a desinfecção dos moldes com aerossóis de hipoclorito de sódio 1% (líquido de Milton) ou glutaraldeído 2% (Glutalabor) não afetou a adaptação entre os gessos e o poliéter.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work it was investigated the effect of the exposure to different plasmas on the wettability of silicone samples. We have observed that oxygen. argon, and hydrogen glow discharges are quite effective in reducing the water contact angle of such polymer. However, indifferently to efficiency of the treatment, practically all the modified surfaces recovered great part of their original hydrophobicity. We have investigated this hydrophobic recovery using surface energy measurements and theoretical simulations based on the exponential decay of the population of polar groups on the surface. According to our results such recovery can be attributed to the decrease of polar species at the interface water-polymer surface.
Resumo:
Commercial polyvinylchloride (PVC) sheets were treated by plasma immersion ion implantation, PIII. Samples were immersed in argon glow discharges and biased with 25 kV negative pulses. Exposure time to the bombardment plasma changed from 900 to 10,800 s. Through contact angle measurements, the effect of the exposure time on the PVC wettability was investigated. Independent of t, all samples presented contact angles, theta, equal to zero after the treatment. However, in some cases, surface hydrophilization was not stable, as revealed by the temporal evolution of theta. Samples bombarded for shorter periods recovered partially or totally the hydrophobic character while the one exposed for the longest time stayed highly hydrophilic. These modifications are ascribed to the Cl loss and O incorporation as shown by XPS measurements. Furthermore, the mobility of surface polar groups and the variation in the cross-linking degree can also affect the PVC wettability.
Resumo:
The electrochemical quartz crystal microbalance (EQCM) technique was used to study two chemically distinct Nb2O5 electrochromic thin films (one pure and the other lithium-doped) during the lithium electroinsertion reaction. In the initial cycles, the electrode showed an irreversible mass variation greater than expected for Li+ insertion/deinsertion processes, which was attributed to the wettability effect (allied to the porous morphology) that emerged as the dominant process in apparent electrode mass changes. As the cycles progressed, the mass variation stabilized and the changes in apparent mass became reversible, showing a good correlation with the charge variations.The results generally indicated that the Li+ insertion/deinsertion process occurred more easily in the Nb2O5-doped film, which also displayed a greater capacity for Li+ insertion. However, a total mass/charge balance analysis revealed that the stoichiometry of the Li+ solid state insertion/deinsertion reaction was similar in the two electrodes under study. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
In this work, the performance of a-C: H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C2H2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 mu s, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films lwere investigated. Film thickness increased from 0.3 to 0.5 mu m when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84 degrees, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of mu) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.
Resumo:
The objectives of this study were to verify the effects of wet suits (WS) on the performance during 1500m swimming (V1500), on the velocity corresponding to the anaerobic threshold (VAT) and on the drag force (AD) as well as its coefficient (Cx). 19 swimmers randomly completed the following protocols on different days (with and without WS): 1) maximal performance of 1500m swimming; 2) VAT in field test, with fixed concentration of blood lactate (4 mM) and 3) determination of hydrodynamic indices (AD and Cx). The results demonstrated significant differences (p < 0.05) in the VAT (1.27±0.09; 1.21±0.06 m.s-1), and in the V1500 (1.21±0.08; 1.17±0.08 m.s-1), with and without WS, respectively. However the AD, and its Cx did not present significant differences (p>0.05) for the respective maximal speeds of swimming. In summary, we can conclude that WS allows swimmers to reach greater speeds in both, long- and short-course swims. This improvement can be related to the decrease of the AD, since with higher speeds (with WS) the subjects presented the same resistance, as they did when compared to speeds without a WS. Moreover, these data suggest that the methodology used in this study to determine the Cx is unable to detect the improvement caused by WS.
Resumo:
Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.
Resumo:
Objective: To evaluate the antimicrobial activity and surface properties of an acrylic resin containing the biocide polymer poly (2-tert-butylaminoethyl) methacrylate (PTBAEMA). Background: Several approaches have been proposed to prevent oral infections, including the incorporation of antimicrobial agents to acrylic resins. Materials and methods: Specimens of an acrylic resin (Lucitone 550) were divided into two groups: 0% (control) and 10% PTBAEMA. Antimicrobial activity was assessed by adherence assay of one of the microorganisms, Staphylococcus aureus, Streptococcus mutans and Candida albicans. Surface topography was characterised by atomic force microscopy and wettability properties determined by contact angle measurements. Results: Data of viable cells (log (CFU + 1)/ml) for S. aureus (control: 7.9 ± 0.8; 10%: 3.8 ± 3.3) and S. mutans (control: 7.5 ± 0.7; 10%: 5.1 ± 2.7) showed a significant decrease with 10% of PTBAEMA (Mann-Whitney, p < 0.05). For C. albicans (control: 6.6 ± 0.2; 10%: 6.6 ± 0.4), there was no significant difference between control and 10% of PTBAEMA (Kruskal-Wallis, p > 0.05). Incorporating 10% PTBAEMA increased surface roughness and decreased contact angles. Conclusion: Incorporating 10% PTBAEMA into acrylic resins increases wettability and roughness of acrylic resin surface; and decreases the adhesion of S. mutans and S. aureus on acrylic surface, but did not exhibit antimicrobial effect against C. albicans. © 2012 The Gerodontology Society and John Wiley & Sons A/S.