966 resultados para Water degradation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
A bare graphite-polyurethane composite was evaluated in the tetracycline (TC) determination in natural water samples. Using differential pulse voltammetry (DPV), a linear response was observed in the range of 4.00-40.0 mu mol L-1 with limit of detection of 2.80 mu mol L-1, without the need of surface renewing between successive runs. During the tetracycline determination in water samples, recoveries between 92.6 and 100% were found. The results for TC determination in water samples after a pre-concentration stage agreed with spiked value at a 95% confidence level according to student t-test.
Resumo:
This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Results show that at initial concentration of 20 mg L-1, atrazine was completely removed in up to 30 min using 10 mA cm(-2) electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.
Resumo:
The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of similar to 100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.
Resumo:
Corrosion is a relevant issue regarding the problem of biodiesel compatibility with polymers and metals. This work aims to evaluate the influence of the natural light incidence and temperature in the corrosion rate of brass and copper immersed in commercial biodiesel as well as biodiesel degradation after the contact with metallic ions. The characterization of corrosion behavior was performed by weight loss measurements according to ASTM G1 and ASTM G31. The experiments according to ASTM G1 were performed at room temperature in light presence and absence. Experiments were also conducted at 55 degrees C in order to compare with ASTM G31 that is also performed at that temperature. The biodiesel degradation was characterized by water content, oxidation stability, viscosity as well as XRF, IR and Raman spectroscopies. The results of ASTM G1 tests showed that the thickness loss for both metals determined at room temperature is slightly higher when there is light incidence and these values significantly decrease for the highest temperature. The results of ASTM G31 tests indicated that air bubbling along with higher temperature affects mostly immersed samples. Biodiesel in contact with metals shows significant degradation in its properties as evidenced by increasing water content, higher viscosity and lower oxidation stability. (C) 2012 Elsevier Ltd. All rights reserved.
Application of Electrochemical Degradation of Wastewater Composed of Mixtures of Phenol-Formaldehyde
Resumo:
The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSAA (R)) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm(-2) is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.
Resumo:
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60 degrees C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this in vitro study was to compare the degradation of resin-dentin bonds of an etch-and-rinse adhesive system to primary and permanent teeth. Flat superficial coronal dentin surfaces from 5 primary second molars and 5 permanent third molars were etched with phosphoric acid and bonded with an adhesive system (Adper Single Bond 2, 3M ESPE). Blocks of resin composite (Z250, 3M ESPE) were built up and the teeth sectioned to produce bonded sticks with a 0.8 mm(2) cross-sectional area. The sticks of each tooth were randomly divided and assigned to be subjected to microtensile testing immediately (24 h) or after aging by water storage (6 months). Data were analyzed by two-way repeated measures ANOVA and Tukey post hoc test (alpha = 0.05). Failure mode was evaluated using a stereomicroscope (400x). Microtensile values significantly decreased after the 6 months aging, independent of the dentin substrate. In 24 h, the values obtained to primary dentin were lower compared with permanent dentin. This difference was not maintained after aging. Adhesive/mixed failure was predominant in all experimental groups. In conclusion, degradation of resin-dentin bonds of the etch-and-rinse adhesive system occurred after 6 months of water storage; however, the reduction in bond strength values was higher for permanent teeth.
Resumo:
The impact of pyretroids, their by-products and degradation products on humans and the environment is recognized as a serious problem. Despite several studies regarding esfenvalerate toxicity and its detection in water and sediments, there is still a lack of information about its degradation intermediates and by-products in water. In this work, an HPLC method was developed to follow up the degradation of esfenvalerate and to detect the intermediates and by-products formed during the chemical degradation process. The chemical degradation was performed using an esfenvalerate suspension and different concentrations of hydrogen peroxide, temperatures, and pH. The reaction was monitored for 24 hr, and during the kinetic experiments, samples were collected at several reaction times and analyzed by HPLC-UV-PAD. In the degradation process, eleven different compounds (intermediate and by-products) were detected, among them the metabolites 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde. HPLC-UV-PAD proved to be a valuable analytical technique for the rapid and reliable separation and determination of esfenvalerate, its degradation intermediates, and by-products.
Resumo:
The aim of this study was to evaluate the resindentin bonds of two simplified etch-and-rinse adhesive after simulated cariogenic and inhibited cariogenic challenge in situ. Dental cavities (4 mm wide, 4 mm long, and 1.5 mm deep) were prepared in 60 bovine teeth with enamel margins. Restorations were bonded with either adhesive Adper Single Bond 2 (3MESPE) or Optibond Solo Plus (Kerr). Forty restorations were included in an intra-oral palatal appliance that was used for 10 adult volunteers while the remaining 20 dental blocks were not submitted to any cariogenic challenge [NC group] and tested immediately. For the simulated cariogenic challenge [C+DA], each volunteer dropped 20% sucrose solution onto all blocks four times a day during 14 days and distilled water twice a day. In the inhibited cariogenic challenge group [C + FA], the same procedure was done, but slurry of fluoride dentifrice (1.100 ppm) was applied instead of water. The restored bovine blocks were sectioned to obtain a slice for cross-sectional Vickers microhardness evaluation and resindentin bonded sticks (0.8 mm2) for resindentin microtensile evaluation. Data were evaluated by two-way ANOVA and Tukey's tests (a = 0.05). Statistically lower microhardness values and degradation of the resindentin bonds were only found in the C + DW group for both adhesives. The in situ model seems to be a suitable short-term methodology to investigate the degradation of the resindentin bonds under a more realistic condition. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 14661471, 2012.
Resumo:
Photodithazine (PDZ) is an N-methyl-D-glucosamine derivative of chlorine e6 that is water soluble and has an intense absorption in the range of 650-680 nm. PDZ photobleaching and photoproduct formation were induced by illumination with laser at two wavelengths: 514 nm (ion argon laser) as well as in 630 nm (dye laser). The time constants of PDZ photobleaching were: 18 min for 630 nm irradiation and 50 min for 514 nm irradiation, suggesting that degradation after irradiation with red light is faster than with green light. Photoproducts formation was evidenced by the appearance of a new absorption band at 668 nm with slight broaden of the Soret band, suggesting that there was no break of the macrocycle. The cytotoxicity of the photodegradated PDZ was investigated and showed to be lower in the dark and higher than non irradiated PDZ. These results may have important clinical implications for PDT such as the possibility to use the previously irradiated PDZ just before clinical application in order to get increased efficiency.