860 resultados para Vision-based row tracking algorithm
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This paper studies the chromosome information of twenty five species, namely, mammals, fishes, birds, insects, nematodes, fungus, and one plant. A quantifying scheme inspired in the state space representation of dynamical systems is formulated. Based on this algorithm, the information of each chromosome is converted into a bidimensional distribution. The plots are then analyzed and characterized by means of Shannon entropy. The large volume of information is integrated by averaging the lengths and entropy quantities of each species. The results can be easily visualized revealing quantitative global genomic information.
Resumo:
Desde o início da utilização da imunohistoquímica em anatomia patológica, um dos objetivos tem sido detetar as quantidades mais ínfimas de antigénio, tornando-o visível ao microscópio ótico. Vários sistemas de amplificação têm sido aplicados de forma a concretizar este objetivo, tendo surgido um grupo genérico de métodos simples e que apresentam uma amplificação superior: são os denominados métodos do polímero indireto. Tendo em conta a variedade de métodos disponíveis, o autor propõe-se a comparar a qualidade de quatro sistemas de amplificação, que recorrem ao método do polímero indireto com horseradish peroxidase (HRP). Foram utilizadas lâminas de diferentes tecidos, fixados em formol e incluídos em parafina, nos quais se procedeu à identificação de 15 antigénios distintos. Na amplificação recorreu-se a quatro sistemas de polímero indireto (Dako EnVision+ System – K4006; LabVision UltraVision LP Detection System – TL-004-HD; Leica NovoLink – RE7140-k; Vector ImmPRESS Reagent Kit – MP-7402). A observação microscópica e classificação da imunomarcação obtida foram feitas com base num algoritmo que enquadra intensidade, marcação específica, marcação inespecífica e contraste, num score global que pode tomar valores entre 0 e 25. No tratamento dos dados, para além da estatística descritiva, foi utilizado o teste one-way ANOVA com posthoc de tukey (alfa=0.05). O melhor resultado obtido, em termos de par média/desvio-padrão, dos scores globais foi o do NovoLink (22,4/2,37) e o pior foi o do EnVision+ (17,43/3,86). Verificou-se ainda que existe diferença estatística entre os resultados obtidos pelo sistema NovoLink e os sistemas UltraVision (p=.004), ImmPRESS (p=.000) e EnVision+ (p=.000). Concluiu-se que o sistema que permitiu a obtenção de melhores resultados, neste estudo, foi o Leica NovoLink.
Resumo:
Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.
Resumo:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Este proyecto, desarrollado en la empresa Davantis, tiene como objetivo encontrar posibles mejoras a su actual sistema de videovigilancia, el Daview. El proyecto está dedicado al estudio del algoritmo de seguimiento Mean Shift para la elaboración de un sistema de tracking. Para ello se han desarrollado y evaluado tres implementaciones diferentes, mediante las cuales se han encontrado mejoras que complementan al módulo de tracking del Daview. También se ha estudiado la utilidad de un sistema de evaluación manual frente a uno de automático.
Resumo:
QUESTION UNDER STUDY: Hospitals transferring patients retain responsibility until admission to the new health care facility. We define safe transfer conditions, based on appropriate risk assessment, and evaluate the impact of this strategy as implemented at our institution. METHODS: An algorithm defining transfer categories according to destination, equipment monitoring, and medication was developed and tested prospectively over 6 months. Conformity with algorithm criteria was assessed for every transfer and transfer category. After introduction of a transfer coordination centre with transfer nurses, the algorithm was implemented and the same survey was carried out over 1 year. RESULTS: Over the whole study period, the number of transfers increased by 40%, chiefly by ambulance from the emergency department to other hospitals and private clinics. Transfers to rehabilitation centres and nursing homes were reassigned to conventional vehicles. The percentage of patients requiring equipment during transfer, such as an intravenous line, decreased from 34% to 15%, while oxygen or i.v. drug requirement remained stable. The percentage of transfers considered below theoretical safety decreased from 6% to 4%, while 20% of transfers were considered safer than necessary. A substantial number of planned transfers could be "downgraded" by mutual agreement to a lower degree of supervision, and the system was stable on a short-term basis. CONCLUSION: A coordinated transfer system based on an algorithm determining transfer categories, developed on the basis of simple but valid medical and nursing criteria, reduced unnecessary ambulance transfers and treatment during transfer, and increased adequate supervision.
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results
Resumo:
BACKGROUND: Visual behavior is known to be atypical in Autism Spectrum Disorders (ASD). Monitor-based eye-tracking studies have measured several of these atypicalities in individuals with Autism. While atypical behaviors are known to be accentuated during natural interactions, few studies have been made on gaze behavior in natural interactions. In this study we focused on i) whether the findings done in laboratory settings are also visible in a naturalistic interaction; ii) whether new atypical elements appear when studying visual behavior across the whole field of view. METHODOLOGY/PRINCIPAL FINDINGS: Ten children with ASD and ten typically developing children participated in a dyadic interaction with an experimenter administering items from the Early Social Communication Scale (ESCS). The children wore a novel head-mounted eye-tracker, measuring gaze direction and presence of faces across the child's field of view. The analysis of gaze episodes to faces revealed that children with ASD looked significantly less and for shorter lapses of time at the experimenter. The analysis of gaze patterns across the child's field of view revealed that children with ASD looked downwards and made more extensive use of their lateral field of view when exploring the environment. CONCLUSIONS/SIGNIFICANCE: The data gathered in naturalistic settings confirm findings previously obtained only in monitor-based studies. Moreover, the study allowed to observe a generalized strategy of lateral gaze in children with ASD when they were looking at the objects in their environment.