951 resultados para Underwater acoustics signal processing
Resumo:
Time-based localization techniques such as multilateration are favoured for positioning to wide-band signals. Applying the same techniques with narrow-band signals such as GSM is not so trivial. The process is challenged by the needs of synchronization accuracy and timestamp resolution both in the nanoseconds range. We propose approaches to deal with both challenges. On the one hand, we introduce a method to eliminate the negative effect of synchronization offset on time measurements. On the other hand, we propose timestamps with nanoseconds accuracy by using timing information from the signal processing chain. For a set of experiments, ranging from sub-urban to indoor environments, we show that our proposed approaches are able to improve the localization accuracy of TDOA approaches by several factors. We are even able to demonstrate errors as small as 10 meters for outdoor settings with narrow-band signals.
Resumo:
This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detection
Resumo:
Nonparametric belief propagation (NBP) is a well-known particle-based method for distributed inference in wireless networks. NBP has a large number of applications, including cooperative localization. However, in loopy networks NBP suffers from similar problems as standard BP, such as over-confident beliefs and possible nonconvergence. Tree-reweighted NBP (TRW-NBP) can mitigate these problems, but does not easily lead to a distributed implementation due to the non-local nature of the required so-called edge appearance probabilities. In this paper, we propose a variation of TRWNBP, suitable for cooperative localization in wireless networks. Our algorithm uses a fixed edge appearance probability for every edge, and can outperform standard NBP in dense wireless networks.
Resumo:
In this paper we present a novel Radio Frequency Identification (RFID) system for accurate indoor localization. The system is composed of a standard Ultra High Frequency (UHF), ISO-18006C compliant RFID reader, a large set of standard passive RFID tags whose locations are known, and a newly developed tag-like RFID component that is attached to the items that need to be localized. The new semi-passive component, referred to as sensatag (sense-a-tag), has a dual functionality wherein it can sense the communication between the reader and standard tags which are in its proximity, and also communicate with the reader like standard tags using backscatter modulation. Based on the information conveyed by the sensatags to the reader, localization algorithms based on binary sensor principles can be developed. We present results from real measurements that show the accuracy of the proposed system.
Resumo:
In the field of detection and monitoring of dynamic objects in quasi-static scenes, background subtraction techniques where background is modeled at pixel-level, although showing very significant limitations, are extensively used. In this work we propose a novel approach to background modeling that operates at region-level in a wavelet based multi-resolution framework. Based on a segmentation of the background, characterization is made for each region independently as a mixture of K Gaussian modes, considering the model of the approximation and detail coefficients at the different wavelet decomposition levels. Background region characterization is updated along time, and the detection of elements of interest is carried out computing the distance between background region models and those of each incoming image in the sequence. The inclusion of the context in the modeling scheme through each region characterization makes the model robust, being able to support not only gradual illumination and long-term changes, but also sudden illumination changes and the presence of strong shadows in the scene
Resumo:
Energy efficiency is a major design issue in the context of Wireless Sensor Networks (WSN). If data is to be sent to a far-away base station, collaborative beamforming by the sensors may help to dis- tribute the load among the nodes and reduce fast battery depletion. However, collaborative beamforming techniques are far from opti- mality and in many cases may be wasting more power than required. In this contribution we consider the issue of energy efficiency in beamforming applications. Using a convex optimization framework, we propose the design of a virtual beamformer that maximizes the network's lifetime while satisfying a pre-specified Quality of Service (QoS) requirement. A distributed consensus-based algorithm for the computation of the optimal beamformer is also provided
Resumo:
We address a cognitive radio scenario, where a number of secondary users performs identification of which primary user, if any, is trans- mitting, in a distributed way and using limited location information. We propose two fully distributed algorithms: the first is a direct iden- tification scheme, and in the other a distributed sub-optimal detection based on a simplified Neyman-Pearson energy detector precedes the identification scheme. Both algorithms are studied analytically in a realistic transmission scenario, and the advantage obtained by detec- tion pre-processing is also verified via simulation. Finally, we give details of their fully distributed implementation via consensus aver- aging algorithms.
Resumo:
A system for estimation of unknown rectangular room dimensions based on two radio transceivers, both capable of full duplex operations, is presented. The approach is based on CIR measurements taken at the same place where the signal is transmitted (generated), commonly known as self- to-self CIR. Another novelty is the receiver antenna design which consists of eight sectorized antennas with 45° aperture in the horizontal plane, whose total coverage corresponds to the isotropic one. The dimensions of a rectangular room are reconstructed directly from radio impulse responses by extracting the information regarding features like round trip time, received signal strength and reverberation time. Using radar approach the estimation of walls and corners positions are derived. Additionally, the analysis of the absorption coefficient of the test environment is conducted and a typical coefficient for office room with furniture is proposed. Its accuracy is confirmed through the results of volume estimation. Tests using measured data were performed, and the simulation results confirm the feasibility of the approach.
Resumo:
Many problems in digital communications involve wideband radio signals. As the most recent example, the impressive advances in Cognitive Radio systems make even more necessary the development of sampling schemes for wideband radio signals with spectral holes. This is equivalent to considering a sparse multiband signal in the framework of Compressive Sampling theory. Starting from previous results on multicoset sampling and recent advances in compressive sampling, we analyze the matrix involved in the corresponding reconstruction equation and define a new method for the design of universal multicoset codes, that is, codes guaranteeing perfect reconstruction of the sparse multiband signal.
Resumo:
This paper presents a description of our system for the Albayzin 2012 LRE competition. One of the main characteristics of this evaluation was the reduced number of available files for training the system, especially for the empty condition where no training data set was provided but only a development set. In addition, the whole database was created from online videos and around one third of the training data was labeled as noisy files. Our primary system was the fusion of three different i-vector based systems: one acoustic system based on MFCCs, a phonotactic system using trigrams of phone-posteriorgram counts, and another acoustic system based on RPLPs that improved robustness against noise. A contrastive system that included new features based on the glottal source was also presented. Official and postevaluation results for all the conditions using the proposed metrics for the evaluation and the Cavg metric are presented in the paper.
Resumo:
Optical signal processing in any living being is more complex than the one obtained in artificial systems. Cortex architecture, although only partly known, gives some useful ideas to be employed in communications. To analyze some of these structures is the objective of this paper. One of the main possibilities reported is handling signals in a parallel way. As it is shown, according to the signal characteristics each signal impinging onto a single input may be routed to a different output. At the same time, identical signals, coming to different inputs, may be routed to the same output without internal conflicts. This is due to the change of some of their characteristics in the way out when going through the intermediate levels. The simulation of this architecture is based on simple logic cells. The basis for the proposed architecture is the five layers of the mammalian retina and the first levels of the visual cortex.
Resumo:
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.
Resumo:
Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.
Resumo:
Negative co-occurrence is a common phenomenon in many signal processing applications. In some cases the signals involved are sparse, and this information can be exploited to recover them. In this paper, we present a sparse learning approach that explicitly takes into account negative co-occurrence. This is achieved by adding a novel penalty term to the LASSO cost function based on the cross-products between the reconstruction coefficients. Although the resulting optimization problem is non-convex, we develop a new and efficient method for solving it based on successive convex approximations. Results on synthetic data, for both complete and overcomplete dictionaries, are provided to validate the proposed approach.
Resumo:
Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.