773 resultados para Tripartite entanglement
Resumo:
In a previous paper, we developed a phenomenological-operator technique aiming to simplify the estimate of losses due to dissipation in cavity quantum electrodynamics. In this paper, we apply that technique to estimate losses during an entanglement concentration process in the context of dissipative cavities. In addition, some results, previously used without proof to justify our phenomenological-operator approach, are now formally derived, including an equivalent way to formulate the Wigner-Weisskopf approximation.
Resumo:
The time evolution of the out-of-equilibrium Mott insulator is investigated numerically through calculations of space-time-resolved density and entropy profiles resulting from the release of a gas of ultracold fermionic atoms from an optical trap. For adiabatic, moderate and sudden switching-off of the trapping potential, the out-of-equilibrium dynamics of the Mott insulator is found to differ profoundly from that of the band insulator and the metallic phase, displaying a self-induced stability that is robust within a wide range of densities, system sizes and interaction strengths. The connection between the entanglement entropy and changes of phase, known for equilibrium situations, is found to extend to the out-of-equilibrium regime. Finally, the relation between the system`s long time behavior and the thermalization limit is analyzed. Copyright (C) EPLA, 2011
Resumo:
In the present work, we investigate the quantum thermal entanglement in molecular magnets composed of dimers of spin S, using an Entanglement Witness built from measurements of magnetic susceptibility. An entanglement temperature, T(e), is then obtained for some values of spin S. From this, it is shown that T(e) is proportional to the intradimer exchange interaction J and that entanglement appears only for antiferromagnetic coupling. The results are compared to experiments carried on three isostructural materials: KNaMSi(4)O(10) (M=Mn, Fe or Cu). Copyright (C) EPLA, 2009
Resumo:
A aproximação na Bacia do Prata é um dos poucos caminhos que os países do contexto regional têm à sua disposição perante os problemas comuns. Entretanto, apesar desta convicção, durante anos as tentativas de convergência foram sobrestadas pela rivalidade brasileiro- argentina, cujas origens remontam à secular disputa geopolítica mantida na região desde a época da dominação luso-espanhola. E, a partir de meados do século passado, conflitos advindos da exploração do potencial fluvial daquela com finalidades hidrelétricas somaram-se aos antagonismos históricos. O presente trabalho analisa o contencioso binacional que decorre da decisão brasileira de construir a Hidrelétrica de Itaipu à revelia dos projetos argentinos para aproveitamento dos recursos propiciados pelo Rio Paraná. A conseqüente crise perdura por mais de uma década, durante a qual a hipótese de confronto armado está sempre presente e as políticas dos países são baseadas na correlação de forças a nível regional; esta, na época, é claramente favorável ao Brasil. Finalmente, como resultado de um longo processo de negociações, é assinado o Acordo Tripartite Itaipu-Corpus, que equaciona o problema da utilização dos recursos hídricos e permite que Brasil e Argentina iniciem uma nova etapa nas suas relações recíprocas, caracterizada pela superação das antigas tensões. Deste modo, as notas diplomáticas trocadas pelos signatários em 19 de outubro de 1979 representam um marco simbólico, ponto de inflexão entre a disputa geopolítica e a política de cooperação, o qual é alcançado apesar dos países envolvidos serem governados por regimes militares de exceção.
Resumo:
In this Letter new aspects of string theory propagating in a pp-wave time dependent background with a null singularity are explored. It is shown the appearance of a 2d entanglement entropy dynamically generated by the background. For asymptotically flat observers, the vacuum close to the singularity is unitarily inequivalent to the vacuum at tau = -infinity and it is shown that the 2d entanglement entropy diverges close to this point. As a consequence. The positive time region is inaccessible for observers in tau = -infinity. For a stationary measure, the vacuum at finite time is seen by those observers as a thermal state and the information loss is encoded as a heat bath of string states. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Searching for an understanding of how the brain supports conscious processes, cognitive scientists have proposed two main classes of theory: Global Workspace and Information Integration theories. These theories seem to be complementary, but both still lack grounding in terms of brain mechanisms responsible for the production of coherent and unitary conscious states. Here we propose following James Robertson's "Astrocentric Hypothesis" - that conscious processing is based on analog computing in astrocytes. The "hardware" for these computations is calcium waves mediated by adenosine triphosphate signaling. Besides presenting our version of this hypothesis, we also review recent findings on astrocyte morphology that lend support to their functioning as Local Hubs (composed of protoplasmic astrocytes) that integrate synaptic activity, and as a Master Hub (composed, in the human brain, by a combination of interlaminar, fibrous, polarized and varicose projection astrocytes) that integrates whole-brain activity.
Resumo:
In non-extensive statistical mechanics [14], it is a nonsense statement to say that the entropy of a system is extensive (or not), without mentioning a law of composition of its elements. In this theory quantum correlations might be perceived through quantum information process. This article, that is an extension of recent work [4], is a comparative study between the entropies of Von Neumann and of Tsallis, with some implementations of the effect of entropy in quantum entanglement, important as a process for transmission of quantum information. We consider two factorized (Fock number) states, which interact through a beam splitter bilinear Hamiltonian with two entries. This comparison showed us that the entropies of Tsallis and Von Neumann behave differently depending on the reflectance of the beam splitter. © 2011 Academic Publications.
Resumo:
We show how mapping techniques inherent to N2-dimensional discrete phase spaces can be used to treat a wide family of spin systems which exhibits squeezing and entanglement effects. This algebraic framework is then applied to the modified Lipkin-Meshkov-Glick (LMG) model in order to obtain the time evolution of certain special parameters related to the Robertson- Schrödinger (RS) uncertainty principle and some particular proposals of entanglement measure based on collective angular-momentum generators. Our results reinforce the connection between both the squeezing and entanglement effects, as well as allow to investigate the basic role of spin correlations through the discrete representatives of quasiprobability distribution functions. Entropy functionals are also discussed in this context. The main sequence correlations → entanglement → squeezing of quantum effects embraces a new set of insights and interpretations in this framework, which represents an effective gain for future researches in different spin systems. © 2013 World Scientific Publishing Company.
Resumo:
In this paper, we present a measure of quantum correlation for a multipartite system, defined as the sum of the correlations for all possible partitions. Our measure can be defined for quantum discord (QD), geometric quantum discord or even for entanglement of formation (EOF). For tripartite pure states, we show that the multipartite measures for the QD and the EOF are equivalent, which allows direct comparison of the distribution and the robustness of these correlations in open quantum systems. We study dissipative dynamics for two distinct families of entanglement: a W state and a GHZ state. We show that, for the W state, the QD is more robust than the entanglement, while for the GHZ state, this is not true. It turns out that the initial genuine multipartite entanglement present in the GHZ state makes the EOF more robust than the QD. © IOP Publishing and Deutsche Physikalische Gesellschaft.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Includes bibliography