990 resultados para Travel Demand Modeling
Resumo:
In his dialogue entitled - A Look Back to Look Forward: New Patterns In The Supply/Demand Equation In The Lodging Industry - by Albert J. Gomes, Senior Principal, Pannell Kerr Forster, Washington, D.C. What the author intends for you to know is the following: “Factors which influence the lodging industry in the United States are changing that industry as far as where hotels are being located, what clientele is being served, and what services are being provided at different facilities. The author charts these changes and makes predictions for the future.” Gomes initially alludes to the evolution of transportation – the human, animal, mechanical progression - and how those changes, in the last 100 years or so, have had a significant impact on the hotel industry. “A look back to look forward treats the past as prologue. American hoteliers are in for some startling changes in their business,” Gomes says. “The man who said that the three most important determinants for the success of a hotel were “location, location, location” did a lot of good only in the short run.” Gomes wants to make you aware of the existence of what he calls, “locational obsolescence.” “Locational obsolescence is a fact of life, and at least in the United States bears a direct correlation to evolutionary changes in transportation technology,” he says. “…the primary business of the hospitality industry is to serve travelers or people who are being transported,” Gomes expands the point. Tied to the transportation element, the author also points out an interesting distinction between hotels and motels. In addressing, “…what clientele is being served, and what services are being provided at different facilities,” Gomes suggests that the transportation factor influences these constituents as well. Also coupled with this discussion are oil prices and shifts in transportation habits, with reference to airline travel being an ever increasing method of travel; capturing much of the inter-city travel market. Gomes refers to airline deregulation as an impetus. The point being, it’s a fluid market rather than a static one, and [successful] hospitality properties need to be cognizant of market dynamics and be able to adjust to the variables in their marketplace. Gomes provides many facts and figures to bolster his assertions. Interestingly and perceptively, at the time of this writing, Gomes alludes to America’s deteriorating road and bridge network. As of right now, in 2009, this is a major issue. Gomes rounds out this study by comparing European hospitality trends to those in the U.S.
Resumo:
In his essay - Toward a Better Understanding of the Evolution of Hotel Development: A Discussion of Product-Specific Lodging Demand - by John A. Carnella, Consultant, Laventhol & Horwath, cpas, New York, Carnella initially describes his piece by stating: “The diversified hotel product in the united states lodging market has Resulted in latent room-night demand, or supply-driven demand resulting from the introduction of a lodging product which caters to a specific set of hotel patrons. The subject has become significant as the lodging market has moved toward segmentation with regard to guest room offerings. The author proposes that latent demand is a tangible, measurable phenomenon best understood in light of the history of the guest room product from its infancy to its present state.” The article opens with an ephemeral depiction of hotel development in the United States, both pre’ and post World War II. To put it succinctly, the author wants you to know that the advent of the inter-state highway system changed the complexion of the hotel industry in the U.S. “Two essential ingredients were necessary for the next phase of hotel development in this country. First was the establishment of the magnificently intricate infrastructure which facilitated motor vehicle transportation in and around the then 48 states of the nation,” says Carnella. “The second event…was the introduction of affordable highway travel. Carnella goes on to say that the next – big thing – in hotel evolution was the introduction of affordable air travel. “With the airways filled with potential lodging guests, developers moved next to erect a new genre of hotel, the airport hotel,” Carnella advances his picture. Growth progressed with the arrival of the suburban hotel concept, which wasn’t fueled by developments in transportation, but by changes in people’s living habits, i.e. suburban affiliations as opposed to urban and city population aggregates. The author explores the distinctions between full-service and limited service lodging operations. “The market of interest with consideration to the extended-stay facility is one dominated by corporate office parks,” Carnella proceeds. These evolutional states speak to latent demand, and even further to segmentation of the market. “Latent demand… is a product-generated phenomenon in which the number of potential hotel guests increases as the direct result of the introduction of a new lodging facility,” Carnella brings his unique insight to the table with regard to the specialization process. The demand is already there; just waiting to be tapped. In closing, “…there must be a consideration of the unique attributes of a lodging facility relative to its ability to attract guests to a subject market, just as there must be an examination of the property's ability to draw guests from within the subject market,” Carnella proposes.
Resumo:
U.S. visitor demand for the China travel experience is anticipated to rise significantly through 2105, causing the Chinese government to employ 100 million service providers over the next six years and raising concern about service delivery and perceptions of the on-site China experience. In an effort to better understand these issues concerning U.S. visitors, this study investigated two specific types of U.S. travelers to China: Group Package Tour (GPT) visitors and Free Independent Travel (FIT) visitors. Results indicated that GPT visitors were more likely to be older and have higher household income than FIT visitors. Four trip-related characteristics of GPT and FIT visitors were found to be significantly different, with GPT visitors showing higher levels of satisfaction with the overall China on-site travel experience.
Resumo:
The standard highway assignment model in the Florida Standard Urban Transportation Modeling Structure (FSUTMS) is based on the equilibrium traffic assignment method. This method involves running several iterations of all-or-nothing capacity-restraint assignment with an adjustment of travel time to reflect delays encountered in the associated iteration. The iterative link time adjustment process is accomplished through the Bureau of Public Roads (BPR) volume-delay equation. Since FSUTMS' traffic assignment procedure outputs daily volumes, and the input capacities are given in hourly volumes, it is necessary to convert the hourly capacities to their daily equivalents when computing the volume-to-capacity ratios used in the BPR function. The conversion is accomplished by dividing the hourly capacity by a factor called the peak-to-daily ratio, or referred to as CONFAC in FSUTMS. The ratio is computed as the highest hourly volume of a day divided by the corresponding total daily volume. ^ While several studies have indicated that CONFAC is a decreasing function of the level of congestion, a constant value is used for each facility type in the current version of FSUTMS. This ignores the different congestion level associated with each roadway and is believed to be one of the culprits of traffic assignment errors. Traffic counts data from across the state of Florida were used to calibrate CONFACs as a function of a congestion measure using the weighted least squares method. The calibrated functions were then implemented in FSUTMS through a procedure that takes advantage of the iterative nature of FSUTMS' equilibrium assignment method. ^ The assignment results based on constant and variable CONFACs were then compared against the ground counts for three selected networks. It was found that the accuracy from the two assignments was not significantly different, that the hypothesized improvement in assignment results from the variable CONFAC model was not empirically evident. It was recognized that many other factors beyond the scope and control of this study could contribute to this finding. It was recommended that further studies focus on the use of the variable CONFAC model with recalibrated parameters for the BPR function and/or with other forms of volume-delay functions. ^
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^
Resumo:
Peer reviewed
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different sce- narios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.
Resumo:
Purpose - The roles of ‘conventional’ (fixed-route and fixed-timetable) bus services is examined and compared to demand-responsive services, taking rural areas in England as the basis for comparison. It adopts a ‘rural’ definition of settlements under a population of 10,000. Design/methodology/approach - Evidence from the National Travel Survey, technical press reports and academic work is brought together to examine the overall picture. Findings - Inter-urban services between towns can provide a cost-effective way of serving rural areas where smaller settlements are suitably located. The cost structures of both fixed-route and demand-responsive services indicate that staff time and cost associated with vehicle provision are the main elements. Demand-responsive services may enable larger areas to be covered, to meet planning objectives of ensuring a minimum of level of service, but experience often shows high unit cost and public expenditure per passenger trip. Economic evaluation indicates user benefits per passenger trip of similar magnitude to existing average public expenditure per trip on fixed-route services. Considerable scope exists for improvements to conventional services through better marketing and service reliability. Practical implications - The main issue in England is the level of funding for rural services in general, and the importance attached to serving those without access to cars in such areas. Social implications - The boundary between fixed-route and demand-responsive operation may lie at relatively low population densities. Originality/value - The chapter uses statistical data, academic research and operator experience of enhanced conventional bus services to provide a synthesis of outcomes in rural areas.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Los mercados asociados a los servicios de voz móvil a móvil, brindados por operadoras del Sistema Móvil Avanzado en Latinoamérica, han estado sujetos a procesos regulatorios motivados por la dominancia en el mercado de un operador, buscando obtener óptimas condiciones de competencia. Específicamente en Ecuador, la Superintendencia de Telecomunicaciones (Organismo Técnico de Control de Telecomunicaciones) desarrolló un modelo para identificar acciones de regulación que puedan proporcionar al mercado efectos sostenibles de competencia en el largo plazo. Este artículo trata sobre la aplicación de la ingeniería de control para desarrollar un modelo integral del mercado, empleando redes neuronales para la predicción de trarifas de cada operador y un modelo de lógica difusa para predecir la demanda. Adicionalmente, se presenta un modelo de inferencia de lógica difusa para reproducir las estrategias de mercadeo de los operadores y la influencia sobre las tarifas. Dichos modelos permitirían la toma adecuada de decisiones y fueron validados con datos reales.
Resumo:
The Train Timetabling Problem (TTP) has been widely studied for freight and passenger rail systems. A lesser effort has been devoted to the study of high-speed rail systems. A modeling issue that has to be addressed is to model departure time choice of passengers on railway services. Passengers who use these systems attempt to travel at predetermined hours due to their daily life necessities (e.g., commuter trips). We incorporate all these features into TTP focusing on high-speed railway systems. We propose a Rail Scheduling and Rolling Stock (RSch-RS) model for timetable planning of high-speed railway systems. This model is composed of two essential elements: i) an infrastructure model for representing the railway network: it includes capacity constraints of the rail network and the Rolling-Stock constraints; and ii) a demand model that defines how the passengers choose the departure time. The resulting model is a mixed-integer programming model which objective function attempts to maximize the profit for the rail operator
Resumo:
Current demand for tourism is characterized by more frequent, shorter trips throughout the year. Such trends may have adverse effects on the hospitality industry but benefit the travel industry. Most current literature assumes that the variables that determine travel participation are identical to those that influence travel frequency, though there is no evidence to support this assumption. Therefore, the current study seeks to identify variables that influence travel frequency among Spanish senior tourists, who represent a key target market for the tourism industry. The results specify that gender, self-perceived economic status, and self-perceived time available variables strongly determine Spanish seniors' travel frequency.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.