975 resultados para Transcriptional profile
Resumo:
Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.
Resumo:
Objectives To evaluate the gene expression profile of fibroblasts from affected and non-affected skin of systemic sclerosis (SSc) patients and from controls. Materials and methods Labeled cDNA from fibroblast cultures from forearm (affected) and axillary (non-affected) skin from six diffuse SSc patients, from three normal controls, and from MOLT-4/HEp-2/normal fibroblasts (reference pool) was probed in microarrays generated with 4193 human cDNAs from the IMAGE Consortium. Microarray images were converted into numerical data and gene expression was calculated as the ratio between fibroblast cDNA (Cy5) and reference pool cDNA (Cy3) data and analyzed by R environment/Aroma, Cluster, Tree View, and SAM softwares. Differential expression was confirmed by real time PCR for a set of selected genes. Results Eighty-eight genes were up- and 241 genes down-regulated in SSc fibroblasts. Gene expression correlation was strong between affected and non-affected fibroblast samples from the same patient (r>0.8), moderate among fibroblasts from all patients (r=0.72) and among fibroblasts from all controls (r=0.70), and modest among fibroblasts from patients and controls (r=0.55). The differential expression was confirmed by real time PCR for all selected genes. Conclusions Fibroblasts from affected and non-affected skin of SSc patients shared a similar abnormal gene expression profile, suggesting that the widespread molecular disturbance in SSc fibroblasts is more sensitive than histological and clinical alterations. Novel molecular elements potentially involved in SSc pathogenesis were identified.
Resumo:
Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
Resumo:
Objective: To evaluate the local immune response in patients with bacterial vaginosis (BV) and cervical intraepithelial neoplasia (CIN), as assessed by cytokine and nitric oxide (NO) concentrations. Study design: Patients attending for routine gynaecological examination were prospectively enrolled in groups: BV (n = 25) diagnosed by clinical criteria, CIN graded I to III (n = 35, 6 CIN 1, 8 CIN 11 and 21 CIN 111) by histological analysis, and controls (n = 15) without clinical and cytological findings. Randomly selected patients within CIN group at grades 11 or III (n = 15) were re-evaluated at 60 days after surgical treatment. Endocervical (EC) and vaginal secretion samples were collected by cytobrush and the levels of cytokines (ELISA) and NO metabolite (Griess reaction) were assayed. Results: NO was assessed in all subjects, and cytokines in all controls, 15 BV and 30 CIN patients. Interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and nitrite levels were higher in EC than in vaginal secretions in BV and CIN groups. In CIN group, IL-8, IL-10 and nitrite concentrations were greater in EC and/or vaginal secretions than in BV or controls. Surgical treatment reduced IL-8 levels in EC and vaginal secretions. Conclusion: A similar local immune profile was found in BV and CIN groups. The increased local production of IL-8, IL-10 and NO in CIN suggests a role for these mediators in the immune response against tumour or tumour development. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The molecular mechanism that controls the response to phosphate shortage in Neurospora crassa involves four regulatory genes - nuc-2, preg, pgov, and nuc-1. Phosphate shortage is sensed by the nuc-2 gene, the product of which inhibits the functioning of the PREG-PGOV complex. This allows the translocation of the transcriptional factor NUC-1 into the nucleus, which activates the transcription of phosphate-repressible phosphatases. The nuc-2A mutant strain of N. crassa carries a loss-of-function mutation in the nuc-2 gene, which encodes an ankyrin-like repeat protein. In this study, we identified transcripts that are downregutated in the nuc-2A mutant strain. Functional grouping of these expressed sequence tags allowed the identification of genes that play essential roles in different cellular processes such as transport, transcriptional regulation, signal transduction, metabolism, protein synthesis, protein fate, and development. These results reveal novel aspects of the phosphorus-sensing network in N. crassa. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Osteopontin (OPN) is a secreted, calcium-binding phosphorylated glycoprotein involved in several physiological and pathological events such as angiogenesis, apoptosis, inflammation, wound healing, vascular remodeling, calcification of mineralized tissues, and induction of cell proteases. There is growing interest in the role of OPN in breast cancer. In an attempt to obtain new insight into the pathogenesis of OPN-associated breast carcinomas, an immunohistochemical panel with 17 primary antibodies including cytokeratins and key regulators of the cell cycle was performed in 100 formalin-fixed paraffin-embedded samples of invasive breast carcinomas. OPN was expressed in 65% of tumors and was negatively correlated with estrogen (p=0.0350) and progesterone (p=0.0069) receptors, but not with the other markers and clinicopathological features evaluated including age, menstrual status, pathological grading, tumor size, and metastasis. There was no correlation between OPN expression and carcinomas of the basal-like phenotype (p=0.1615); however, OPN correlated positively with c-erbB-2 status (p=0.0286) and negatively with carcinomas of the luminal subtype (p=0.0353). It is well known that carcinomas overexpressing c-erbB-2 protein have a worse prognosis than luminal tumors. Here, we hypothesize that the differential expression of OPN in the first subtype of carcinomas may contribute to their more aggressive behavior. (Int J Biol Markers 2008; 23: 154-60)
Resumo:
Context The association between large for gestational age (LGA) phenotype, postnatal growth and cardiometabolic risk (CMR) in adult life remains unclear. The role of IGF1 genotype on LGA-related outcomes in adult life is unknown. Aim To assess the postnatal growth, IGF-I levels, CMR and the influence of the 737.738 IGF1 in adults born LGA. Subjects Case-control study (n = 515) nested in a population-based prospective cohort (n = 2063); 117 LGA and 398 gender-matched controls appropriate for gestational age (AGA) subjects. Methods Anthropometry was evaluated at birth, at 9-10 and at 23-25 years old. At the age of 23-25 years, blood pressure (BP), glycaemia, insulinaemia, homeostasis model assessment - insulin resistance, lipids, fibrinogen, and plasma IGF-I and 737.738 IGF1 polymorphism were assessed. Results Large for gestational age subjects remained heavier and taller than AGA at 9-10 and 23-25 years (P < 0.05); at 23-25 years, LGA had greater waist circumference (WC; P < 0.05) and higher BP (P < 0.05) than controls. Body proportionality at birth did not predict metabolic outcome. LGA subjects presenting catch-down of weight in childhood had lower body mass index (BMI; P = 0.001), lower WC (P < 0.05) and lower BP (P < 0.05) at 2325 years. 737.738 IGF-I genotype differed between groups (P < 0.001). Homozygosis for polymorphic alleles was associated with increased odds of LGA (OR: 3.2; 95% CI: 1.5-6.9), higher IGF-I (56.9 +/- 16.4 vs 37.7 +/- 16.0 nm; P < 0.01) and lower BP (114/68 vs 121/73 mmHg; P < 0.05). Conclusions Young adults born LGA presented higher BMI, WC and BP and appear to be at higher CMR risk than AGA subjects. The 737.738 IGF1 polymorphism appears to play a role on birth size and LGA-related metabolic outcomes.
Resumo:
Background. Increased activity of multidrug resistance (MDR) genes has been associated with treatment failure in acute leukemias, although with controversial reports. The objective of the present study was to assess the expression profile of the genes related to MDR: ABCB1, ABCC1, ABCC3, ABCC2, and LRP/MVP in terms of the clinical and biological variable and the survival of children with acute lymphoblastic leukemia (ALL). Procedure. The levels of mRNA expression of the drug resistance genes ABCB1, ABCC1, ABCC3, ABCG2, and LRP/MVP were analyzed by quantitative real-time PCR using the median Values as cut-off points, in consecutive samples from 140 children with ALL at diagnosis. Results. Expression levels of the ABCG2 gene in the patient group as a whole (P=0.05) and of the ABCG2 and ABCC1 genes in patients classified as being at high risk were associated with higher rates of 5-year event-free survival (EFS) (P=0.04 and P=0.01). Expression levels of the ABCG2 gene below the median were associated with a greater chance of death related to treatment toxicity for the patient group as a whole (P=0.009) and expression levels below the median of the ABCG2 and ABCC1 genes were associated with a greater chance of death due to treatment toxicity for the high-risk group (P=0.02 and P=0.03, respectively). Conclusion. The present data suggest a low participation of the drug efflux genes in treatment failure in patients with childhood ALL. However, the low expression of some of these genes may be associated with a higher death risk related to treatment toxicity. Pediatr Blood Cancer 2009;53:996-1004. (C) 2009 Wiley-Liss, Inc.
Resumo:
Background Little progress has been made to identify the central neuroendocrine pathway involved in the energy intake control in nonalcoholic fatty liver disease (NAFLD) patients. Objective To assess the influence of orexigenic neuropeptides in the nutritional aspects of NAFLD obese adolescents submitted to a long-term interdisciplinary approach. Methods Fifty adolescents aged 15-19 years, with body mass index at least 95th percentile, consisting of 25 patients without NAFLD and 25 with NAFLD. The NAFLD diagnosis was determined by ultrasonography. Blood samples were collected to analyze glycemia, hepatic transaminases, and lipid profile. Insulin resistance was estimated by Homeostasis Model Assessment Insulin Resistance Index. Neuropeptide Y (NPY) and agouti related protein concentrations were measured by enzyme-linked immunosorbent assay. Analyses of food intake were made by 3 days recordatory inquiry. Results At baseline conditions, the patients with NAFLD had significantly higher values of body mass, body mass index, visceral fat, triglycerides, VLDL-C, and hepatic transaminases. After the long-term intervention, they presented a significant reduction in these parameters. In both the groups, it was observed a significant decrease in energy intake, macronutrients and dietetic cholesterol. Only the patients with NAFLD presented a positive correlation between the saturated fatty acids intake and the orexigenic neuropeptides NPY and agouti related protein, and carbohydrate with NPY. Indeed, it was observed a positive correlation between energy intake, lipid (%) and saturated fatty acids with visceral fat accumulation. Conclusion Our findings showed an important influence of diet composition in the orexigenic system, being essential consider that the excessive saturated fatty acids intake could be a determinant factor to increase nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 22:557-563 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Trichophyton rubrum is a dermatophyte that infects human skin and nails. Its growth on keratin as its carbon source shifts the ambient pH from acidic to alkaline, which may be an efficient strategy for its successful infection and maintenance in the host. In this study, we used suppression subtractive hybridization to identify genes preferentially expressed in T rubrum incubated at either pH 5.0 or pH 8.0. The functional grouping of the 341 overexpressed unigenes indicated proteins putatively involved in diverse cellular processes, such as membrane remodeling, cellular transport, metabolism, cellular protection, fungal pathogenesis, gene regulation, interaction with the environment, and iron uptake. Although the basic metabolic machinery identified under both growth conditions seems to be functionally similar, distinct genes are upregulated at acidic or alkaline pHs. We also isolated a large number of genes of unknown function, probably unique to T rubrum or dermatophytes. Interestingly, the transcriptional profiling of several genes in a pacC mutant suggests that, in T rubrum, the transcription factor PacC has a diversity of metabolic functions, in response to either acidic or alkaline ambient pH. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Gene expression profiling by cDNA microarrays during murine thymus ontogeny has contributed to dissecting the large-scale molecular genetics of T cell maturation. Gene profiling, although useful for characterizing the thymus developmental phases and identifying the differentially expressed genes, does not permit the determination of possible interactions between genes. In order to reconstruct genetic interactions, on RNA level, within thymocyte differentiation, a pair of microarrays containing a total of 1,576 cDNA sequences derived from the IMAGE MTB library was applied on samples of developing thymuses (14-17 days of gestation). The data were analyzed using the GeneNetwork program. Genes that were previously identified as differentially expressed during thymus ontogeny showed their relationships with several other genes. The present method provided the detection of gene nodes coding for proteins implicated in the calcium signaling pathway, such as Prrg2 and Stxbp3, and in protein transport toward the cell membrane, such as Gosr2. The results demonstrate the feasibility of reconstructing networks based on cDNA microarray gene expression determinations, contributing to a clearer understanding of the complex interactions between genes involved in thymus/thymocyte development.
Resumo:
Background Reports of iatrogenic thermal injuries during laparoscopic surgery using new generation vessel-sealing devices, as well as anecdotal reports of hand burn injuries during hand-assisted surgeries, have evoked questions about the temperature safety profile and the cooling properties of these instruments. Methods This study involved video recording of temperatures generated by different instruments (Harmonic ACE [ACE], Ligasure V [LV], and plasma trisector [PT]) applied according the manufacturers` pre-set settings (ACE setting 3; LV 3 bars, and the PT TR2 50W). The video camera used was the infrared Flex Cam Pro directed to three different types of swine tissue: (1) peritoneum (P), (2) mesenteric vessels (MV), and (3) liver (L). Activation and cooling temperature and time were measured for each instrument. Results The ACE device produced the highest temperatures (195.9 degrees +/- 14.5 degrees C) when applied against the peritoneum, and they were significantly higher than the other instruments (LV = 96.4 degrees +/- 4.1 degrees C, and PT = 87 degrees +/- 2.2 degrees C). The LV and PT consistently yielded temperatures that were < 100 degrees C independent of type of tissue or ""on""/ ""off"" mode. Conversely, the ACE reached temperatures higher than 200 degrees C, with a surprising surge after the instrument was deactivated. Moreover, temperatures were lower when the ACE was applied against thicker tissue (liver). The LV and PT cooling times were virtually equivalent, but the ACE required almost twice as long to cool. Conclusions The ACE increased the peak temperature after deactivation when applied against thick tissue (liver), and the other instruments inconsistently increased peak temperatures after they were turned off, requiring few seconds to cool down. Moreover, the ACE generated very high temperatures (234.5 degrees C) that could harm adjacent tissue or the surgeon`s hand on contact immediately after deactivation. With judicious use, burn injury from these instruments can be prevented during laparoscopic procedures. Because of the high temperatures generated by the ACE device, particular care should be taken when it is used during laparoscopy.
Resumo:
Objective. The aim of this study was to demonstrate the immunohistochemical profile of oral inflammatory myofibroblastic tumors (IMTs) along with morphologic analysis. Study design. Three cases diagnosed as oral IMTs were selected to compile an immunohistochemical panel constituted by calponin, caldesmon, Bcl-2, desmin, fibronectin, CD68, Ki-67, S100, anaplastic lymphoma kinase (ALK), alpha-smooth muscle actin, cytokeratins AE1/AE3, muscle-specific actin, CD34, and vimentin. An oral squamous cell carcinoma with a focal area of desmoplastic stroma was used as control for the stained myofibroblastic cells. Results. All oral IMTs were positive for calponin, revealing a strong and diffuse expression in the spindle-shaped cells. The lesions were also positive for vimentin (3/3), fibronectin (3/3), alpha-smooth muscle actin (3/3), and muscle-specific actin (1/3) and negative for h-caldesmon, Bcl-2, desmin, CD68, Ki-67, S100, ALK, cytokeratins AE1/AE3, and CD34. Conclusions. Within the results encountered, the present panel should be of great assistance in the diagnosis of oral IMTs. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: 749-756)