946 resultados para Time domain simulation tools
Resumo:
This paper studies the limits of discrete time repeated games with public monitoring. We solve and characterize the Abreu, Milgrom and Pearce (1991) problem. We found that for the "bad" ("good") news model the lower (higher) magnitude events suggest cooperation, i.e., zero punishment probability, while the highrt (lower) magnitude events suggest defection, i.e., punishment with probability one. Public correlation is used to connect these two sets of signals and to make the enforceability to bind. The dynamic and limit behavior of the punishment probabilities for variations in ... (the discount rate) and ... (the time interval) are characterized, as well as the limit payo¤s for all these scenarios (We also introduce uncertainty in the time domain). The obtained ... limits are to the best of my knowledge, new. The obtained ... limits coincide with Fudenberg and Levine (2007) and Fudenberg and Olszewski (2011), with the exception that we clearly state the precise informational conditions that cause the limit to converge from above, to converge from below or to degenerate. JEL: C73, D82, D86. KEYWORDS: Repeated Games, Frequent Monitoring, Random Pub- lic Monitoring, Moral Hazard, Stochastic Processes.
Resumo:
Although it is commonly accepted that most macroeconomic variables are nonstationary, it is often difficult to identify the source of the non-stationarity. In particular, it is well-known that integrated and short memory models containing trending components that may display sudden changes in their parameters share some statistical properties that make their identification a hard task. The goal of this paper is to extend the classical testing framework for I(1) versus I(0)+ breaks by considering a a more general class of models under the null hypothesis: non-stationary fractionally integrated (FI) processes. A similar identification problem holds in this broader setting which is shown to be a relevant issue from both a statistical and an economic perspective. The proposed test is developed in the time domain and is very simple to compute. The asymptotic properties of the new technique are derived and it is shown by simulation that it is very well-behaved in finite samples. To illustrate the usefulness of the proposed technique, an application using inflation data is also provided.
Resumo:
This paper describes a simulation package designed to estimate the annual income taxes paid by respondents of the Swiss Household Panel (SHP). In Switzerland, the 26 cantons have their own tax system. Additionally, tax levels vary between the over 2000 municipalities and over time. The simulation package takes account of this complexity by building on existing tables on tax levels which are provided by the Swiss Federal Tax Administration Office. Because these are limited to a few types of households and only 812 municipalities, they have to be extended to cover all households and municipalities. A further drawback of these tables is that they neglect several deductions. The tax simulation package fills this gap by taking additionally account of deductions for children, double-earner couples, third pillar and support for dependent persons according to cantonal legislation. The resulting variable on direct taxes not only serves to calculate household income net of taxes, but can also be a variable for analysis by its own account.
Resumo:
We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h.
Resumo:
The performance of a device based on modified injection-locking techniques is studied by means of numerical simulations. The device incorporates master and slave configurations, each one with a DFB laser and an electroabsortion modulator (EAM). This arrangement allows the generation of high peak power, narrow optical pulses according to a periodic or pseudorandom bit stream provided by a current signal generator. The device is able to considerably increase the modulation bandwidth of free-running gain-switched semiconductor lasers using multiplexing in the time domain. Opportunities for integration in small packages or single chips are discussed.
Resumo:
Tämän diplomityön tavoitteena oli löytää Perlos Tools Joensuun tehtaalle sopiva taloudellinen ja läpimenoajaltaan lyhyt ruiskupuristusmuotin valmistusprosessi. Kirjallisuusosiossa tarkastellaan valmistuksen prosessimalleja, esitellään tärkeimmät muotinvalmistuksen menetelmät, sekä nykytilan ja tulevaisuuden haasteet. Lisäksi tarkastellaan muotinvalmistuksen työajan ja kulujen jakaantumista, tärkeimpiä investointilaskelmia, sekä investointien perustelemista simulointien avulla. Tutkimusosiossa simuloidaan erilaisia prosessimalleja, selvitetään valmistusmenetelmienja koneiden vaikutusta muotinvalmistuksen läpimenoaikaan, sekä lasketaan investointien ja valmistuskoneiden vaikutukset takaisinmaksuaikoihin. Simulaation tavoitteena on asiaankuuluvien mallien, sopivien kysymysten sekä prosessimallien kehittämisen kautta tuottaa analysoitua informaatiota päätöksenteon tueksi. Tutkimustulosten perusteella ruiskupuristusmuotin valmistusprosessi on optimoitu. Optimoinnin tuloksena tarkasteltavalla yrityksellä on käytössään taloudellinen ja läpimenoajaltaan lyhyt ruiskupuristusmuotin valmistusprosessi.
Resumo:
Process development will be largely driven by the main equipment suppliers. The reason for this development is their ambition to supply complete plants or process systems instead of single pieces of equipment. The pulp and paper companies' interest lies in product development, as their main goal is to create winning brands and effective brand management. Design engineering companies will find their niche in detail engineering based on approved process solutions. Their development work will focus on increasing the efficiency of engineering work. Process design is a content-producing profession, which requires certain special characteristics: creativity, carefulness, the ability to work as a member of a design team according to time schedules and fluency in oral as well as written presentation. In the future, process engineers will increasingly need knowledge of chemistry as well as information and automation technology. Process engineering tools are developing rapidly. At the moment, these tools are good enough for static sizing and balancing, but dynamic simulation tools are not yet good enough for the complicated chemical reactions of pulp and paper chemistry. Dynamic simulation and virtual mill models are used as tools for training the operators. Computational fluid dynamics will certainlygain ground in process design.
Resumo:
Työssä tutkittiin kiekkosuodattimeen liittyviä ulkoisia simulointimalleja integroidussa simulointiympäristössä. Työn tarkoituksena oli parantaa olemassa olevaa mekanistista kiekkosuodatinmallia. Malli laadittiin dynaamiseen paperiteollisuuden tarpeisiin tehtyyn simulaattoriin (APMS), jossa olevaan alkuperäiseen mekanistiseen malliin tehtiin ulkoinen lisämalli, joka käyttää hyväkseen kiekkosuodatinvalmistajan mittaustuloksia. Laitetiedon saatavuutta suodattimien käyttäjille parannettiin luomalla Internetissä sijaitsevalle palvelimelle kiekkosuodattimen laitetietomäärittelyt. Suodatinvalmistaja voi palvella asiakkaitaan viemällä laitetiedot palvelimelle ja yhdistämällä laitetiedon simulointimalliin. Tämä on mahdollista Internetin ylitse käytettävän integroidun simulointiympäristön avulla, jonka on tarkoitus kokonaisvaltaisesti yhdistää simulointi ja prosessisuunnittelu. Suunnittelijalle tarjotaan työkalut, joilla dynaaminen simulointi, tasesimulointi ja kaavioiden piirtäminen onnistuu prosessilaitetiedon ollessa saatavilla. Nämä työkalut on tarkoitus toteuttaa projektissa nimeltä Galleria, jossa luodaan prosessimalli- ja laitetietopalvelin Internetiin. Gallerian käyttöliittymän avulla prosessisuunnittelija voi käyttää erilaisia simulointiohjelmistoja ja niihin luotuja valmiita malleja, sekä saada käsiinsä ajan tasalla olevaa laitetietoa. Ulkoinen kiekkosuodatinmalli laskee suodosvirtaamat ja suodosten pitoisuudet likaiselle, kirkkaalle ja superkirkkaalle suodokselle. Mallin syöttöparametrit ovat kiekkojen pyörimisnopeus, sisään tulevan syötön pitoisuus, suotautuvuus (freeness) ja säätöparametri, jolla säädetään likaisen ja kirkkaan suodoksen keskinäinen suhde. Suotautuvuus kertoo mistä massasta on kyse. Mitä suurempi suotautuvuus on, sitä paremmin massa suodattuu ja sitä puhtaampia suodokset yleensä ovat. Mallin parametrit viritettiin regressioanalyysillä ja valmistajan palautetta apuna käyttäen. Käyttäjä voi valita haluaako hän käyttää ulkoista vai alkuperäistä mallia. Alkuperäinen malli täytyy ensin alustaa antamalla sille nominaaliset toimintapisteet virtaamille ja pitoisuuksille tietyllä pyörimisnopeudella. Ulkoisen mallin yhtälöitä voi käyttää alkuperäisen mallin alustamiseen, jos alkuperäinen malli toimii ulkoista paremmin. Ulkoista mallia voi käyttää myös ilman simulointiohjelmaa Galleria-palvelimelta käsin. Käyttäjälle avautuu näin mahdollisuus tarkastella kiekkosuodattimien parametreja ja nähdä suotautumistulokset oman työasemansa ääreltä mistä tahansa, kunhan Internetyhteys on olemassa. Työn tuloksena kiekkosuodattimien laitetiedon saatavuus käyttäjille parani ja alkuperäisen simulointimallin rajoituksia ja puutteita vähennettiin.
Resumo:
Testing of a complex software is time consuming. Automated tools are available quite a lot for desktop applications, but for embedded systems a custom-made tool is required Building a complete test framework is a complicated task. Therefore, the test platform was built on top of an already existing tool, CANoe. CANoe is a tool for CAN bus analysis and node simulation. The functionality of CANoe was extended with LabVIEW DLL. The LabVIEW software was used for simulating hardware components of the embedded device As a result of the study, a platform was created where tests could be automated. Of the current test plan, 10 percent were automated and up to 60 percent could be automated with the current functionality.
Resumo:
Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.
Resumo:
Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
The aim of this study was to quantify the water consumption and the crop coefficients (Kc) for the potato (Solanum tuberosum L.), in Seropédica, Rio de Janeiro (RJ), Brazil, under organic management, and to simulate the crop evapotranspiration (ETc) using the Kc obtained in the field and the ones recommended by the Food and Agriculture Organization (FAO). The water consumption was obtained through soil water balance, using TDR probes installed at 0.15m and 0.30m deep. At the different stages of development, the Kc was determined by the ratio of ETc and reference evapotranspiration, obtained by Penman-Monteith FAO 56. The crop coefficients obtained were 0.35, 0.45, 1.29 and 0.63. The accumulated ETc obtained in the field was 109.6 mm, while the ETc accumulated from FAO's Kc were 142.2 and 138mm, respectively, considering the classical values and the values adjusted to the local climatic conditions. The simulation of water consumption based on meteorological data of historical series from 1961 to 2007 provided higher value of ETc when compared with the one obtained in the field. From the meteorological data of historical series, it was observed that the use of Kc recommended by FAO may overestimate the amount of irrigation water by 9%, over the same growing season.
Resumo:
Nowadays advanced simulation technologies of semiconductor devices occupies an important place in microelectronics production process. Simulation helps to understand devices internal processes physics, detect new effects and find directions for optimization. Computer calculation reduces manufacturing costs and time. Modern simulation suits such as Silcaco TCAD allow simulating not only individual semiconductor structures, but also these structures in the circuit. For that purpose TCAD include MixedMode tool. That tool can simulate circuits using compact circuit models including semiconductor structures with their physical models. In this work, MixedMode is used for simulating transient current technique setup, which include detector and supporting electrical circuit. This technique was developed by RD39 collaboration project for investigation radiation detectors radiation hard properties.
Resumo:
Switching power supplies are usually implemented with a control circuitry that uses constant clock frequency turning the power semiconductor switches on and off. A drawback of this customary operating principle is that the switching frequency and harmonic frequencies are present in both the conducted and radiated EMI spectrum of the power converter. Various variable-frequency techniques have been introduced during the last decade to overcome the EMC problem. The main objective of this study was to compare the EMI and steady-state performance of a switch mode power supply with different spread-spectrum/variable-frequency methods. Another goal was to find out suitable tools for the variable-frequency EMI analysis. This thesis can be divided into three main parts: Firstly, some aspects of spectral estimation and measurement are presented. Secondly, selected spread spectrum generation techniques are presented with simulations and background information. Finally, simulations and prototype measurements from the EMC and the steady-state performance are carried out in the last part of this work. Combination of the autocorrelation function, the Welch spectrum estimate and the spectrogram were used as a substitute for ordinary Fourier methods in the EMC analysis. It was also shown that the switching function can be used in preliminary EMC analysis of a SMPS and the spectrum and autocorrelation sequence of a switching function correlates with the final EMI spectrum. This work is based on numerous simulations and measurements made with the prototype. All these simulations and measurements are made with the boost DC/DC converter. Four different variable-frequency modulation techniques in six different configurations were analyzed and the EMI performance was compared to the constant frequency operation. Output voltage and input current waveforms were also analyzed in time domain to see the effect of the spread spectrum operation on these quantities. According to the results presented in this work, spread spectrum modulation can be utilized in power converter for EMI mitigation. The results from steady-state voltage measurements show, that the variable-frequency operation of the SMPS has effect on the voltage ripple, but the ripple measured from the prototype is still acceptable in some applications. Both current and voltage ripple can be controlled with proper main circuit and controller design.