955 resultados para Three-dimensional image
Resumo:
A method is presented to obtain stresses and displacements in rotating disks by taking into account the effect of out-of-plane restraint conditions at the hub. The stresses and displacements are obtained in a non-dimensional form, presented in the form of graphs and compared with the generalized plane stress solution.
Resumo:
This research project investigated a bioreactor system capable of high density cell growth intended for use in regenerative medicine and protein production. The bioreactor was based on a drip-perfusion concept and constructed with minimal costs, readily available components, and straightforward processes for usage. This study involved the design, construction, and testing of the bioreactor where the results showed promising three dimensional cell growth within a polymer structure. The accessibility of this equipment and the capability of high density, three dimensional cell growth would be suitable for future research in pharmaceutical drug manufacturing, and human organ and tissue regeneration.
Resumo:
A new set of equations describing completely the optical phenomena in a model involving continuous rotation of secondary axes and secondary principal-stress differences are obtained. These are solved by Peano-Baker method using experimentally determined characteristic parameters for several wavelengths of light. Experimental verifications are obtained for a rectangular bar subjected to combined torsion and tension.
Resumo:
A method is presented to obtain stresses and displacements in rotating disks by taking into account the effect of out-of-plane restraint conditions at the hub. The stresses and displacements are obtained in a non-dimensional form, presented in the form of graphs and compared with the generalized plane stress solution.
Resumo:
Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation 1 and principal axis at azimuth 1, and a pure rotator of power 2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters
Resumo:
A method of analysing a 3-dimensional corner reflector antenna of arbitrary apex angle is given. Expressions have been obtained for the far field of the 3-dimensional corner reflector fed by a dipole. The radiation resistance and the directive gain of the antenna have been calculated. The method described is applicable even when the feed dipole is arbitrarily oriented. It is found that the radiation along a prescribed direction can be circularly polarised (right or left) by suitably orienting the feed dipole.
Resumo:
Historically, two-dimensional (2D) cell culture has been the preferred method of producing disease models in vitro. Recently, there has been a move away from 2D culture in favor of generating three-dimensional (3D) multicellular structures, which are thought to be more representative of the in vivo environment. This transition has brought with it an influx of technologies capable of producing these structures in various ways. However, it is becoming evident that many of these technologies do not perform well in automated in vitro drug discovery units. We believe that this is a result of their incompatibility with high-throughput screening (HTS). In this study, we review a number of technologies, which are currently available for producing in vitro 3D disease models. We assess their amenability with high-content screening and HTS and highlight our own work in attempting to address many of the practical problems that are hampering the successful deployment of 3D cell systems in mainstream research.
Resumo:
Serial Block-Face Scanning Electron Microscopy (SBF-SEM) was used in this study to examine the ultrastructural morphology of Penaeus monodon spermatozoa. SBF-SEM provided a large dataset of sequential electron-microscopic-level images that facilitated comprehensive ultrastructural observations and three-dimensional reconstructions of the sperm cell. Reconstruction divulged a nuclear region of the spermatophoral spermatozoon filled with decondensed chromatin but with two apparent levels of packaging density. In addition, the nuclear region contained, not only numerous filamentous chromatin elements with dense microregions, but also large centrally gathered granular masses. Analysis of the sperm cytoplasm revealed the presence of degenerated mitochondria and membrane-less dense granules. A large electron-lucent vesicle and "arch-like" structures were apparent in the subacrosomal area, and an acrosomal core was found in the acrosomal vesicle. The spermatozoal spike arose from the inner membrane of the acrosomal vesicle, which was slightly bulbous in the middle region of the acrosomal vesicle, but then extended distally into a broad dense plate and to a sharp point proximally. This study has demonstrated that SBF-SEM is a powerful technique for the 3D ultrastructural reconstruction of prawn spermatozoa, that will no doubt be informative for further studies of sperm assessment, reproductive pathology and the spermiocladistics of penaeid prawns, and other decapod crustaceans. J. Morphol., 2016. (c) 2016 Wiley Periodicals, Inc.
Resumo:
An iterative algorithm baaed on probabilistic estimation is described for obtaining the minimum-norm solution of a very large, consistent, linear system of equations AX = g where A is an (m times n) matrix with non-negative elements, x and g are respectively (n times 1) and (m times 1) vectors with positive components.
Resumo:
In cases whazo zotatLon of the seoondazy pztncipal 8tzo,ae axes along tha light path ,exists, it is always poaeible to detezmlna two dizactions along which plane-polazlaad light ,antazlng the model ,amerCe8 as plene-pela~l,aed light fzom the model. Puzth,az the nat zstazdatton Pot any light path is dlff,azant Prom the lntsgtatad zetazd,ation Pat the l£ght path nogZsctlng the ePfsct or z,atation.
Resumo:
Abstract is not available.
Resumo:
A method for separation of stresses in two and three-dimensional photo elasticity using the harmonisation ofjrst stress invariant along a straight section is deve- ,dped. For two-dimensions, the equations of equilibrium are reformulated in terms ojsum and difference of normal stresses and relations are obtained which can be used for harmonisation of the first invariant of stress along a straight section. A similar procedure is adopted for three-dimensions by making use of the Beltrmi-MicheN equations. The new relations are used in finite d~yerencefo rm to evaluate the sum of normal stresses along straight sections in a three-dimensional body. The method requires photoelastic data along the section as well ~rra djacent sections. This method could be used as an alternative to the shear d@erence method for separation of stresses in photoelasticity. 7he accuracy and reliability of the method is ver$ed by applying the method to problems whose solutions are known.
Resumo:
Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation delta1 and principal axis at azimuth phgr1, and a pure rotator of power phgr2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters.
Resumo:
The unsteady laminar incompressible boundary-layer flow near the three-dimensional asymmetric stagnation point has been studied under the assumptions that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. It is found that in contrast with the symmetric flow, the maximum heat transfer occurs away from the stagnation point due to the decrease in the boundary-layer thickness. The effect of the variation of the wall temperature with time on heat transfer is strong. The skin friction and heat transfer due to asymmetric flow only are comparatively less affected by the mass transfer as compared to those of symmetric flow.