959 resultados para Thoracic Wall
Resumo:
High luminance contrast between windows and surrounding surfaces could cause discomfort glare, which could reduce office workers’ productivity. It might also increase energy usage of buildings due to occupants’ interventions in lighting conditions to improve indoor visual quality. It is presumed that increasing the luminance of the areas surrounding the windows using a supplementary system, such Light Emitting Diodes (LEDs), could reduce discomfort glare. This paper reports on the results of a pilot study in a conventional office in Brisbane, Australia. The outcomes of this study indicated that a supplementary LED system could reduce the luminance contrast on the window wall from values in the order of 24:1 to 12:1. The results suggest that this reduction could significantly reduce discomfort glare from windows, as well as diminishing the likelihood of users’ intention to turn on the ceiling lights and/ or to move the blind down.
Resumo:
This paper presents the results of shaking table tests on models of rigid-faced reinforced soil retaining walls in which reinforcement materials of different tensile strength were used. The construction of the model retaining walls in a laminar box mounted on a shaking table, the instrumentation and the results from the shaking table tests are described in detail and the effects of the reinforcement parameters on the acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are presented. It was observed from these tests that the horizontal face displacement response of the rigid-faced retaining walls was significantly affected by the inclusion of reinforcement and even low-strength polymer reinforcement was found to be efficient in significantly reducing the deformation of the face. The acceleration amplifications were, however, observed to be less influenced by the reinforcement parameters. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls under the different test conditions used in the experiments.
Resumo:
This paper presents the results of shaking table tests on model reinforced soil retaining walls in the laboratory. The influence of backfill relative density on the seismic response was studied through a series of laboratory model tests on retaining walls. Construction of model retaining walls in the laminar box mounted on shaking table, instrumentation and results from the shaking table tests are described in detail. Three types of walls: wrap- and rigid-faced reinforced soil walls and unreinforced rigid-faced walls constructed to different densities were tested for a relatively small excitation. Wrap-faced walls are further tested for higher base excitation at different frequencies and relative densities. It is observed from these tests that the effect of backfill density on the seismic performance of reinforced retaining walls is pronounced only at very low relative density and at the higher base excitation. The walls constructed with higher backfill relative density showed lesser face deformations and more acceleration amplifications compared to the walls constructed with lower densities when tested at higher base excitation. The response of wrap- and rigid-faced retaining walls is not much affected by the backfill relative density when tested at smaller base excitation. The effects of facing rigidity were evaluated to a limited extent. Displacements in wrap-faced walls are many times higher compared to rigid-faced walls. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls constructed to when subjected to smaller and higher base excitation for the range of relative density employed in the testing program. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The structure and the mechanical properties of wood of Norway spruce (Picea abies [L.] Karst.) were studied using small samples from Finland and Sweden. X-ray diffraction (XRD) was used to determine the orientation of cellulose microfibrils (microfibril angle, MFA), the dimensions of cellulose crystallites and the average shape of the cell cross-section. X-ray attenuation and x-ray fluorescence measurements were used to study the chemical composition and the trace element content. Tensile testing with in situ XRD was used to characterise the mechanical properties of wood and the deformation of crystalline cellulose within the wood cell walls. Cellulose crystallites were found to be 192 284 Å long and 28.9 33.4 Å wide in chemically untreated wood and they were longer and wider in mature wood than in juvenile wood. The MFA distribution of individual Norway spruce tracheids and larger samples was asymmetric. In individual cell walls, the mean MFA was 19 30 degrees, while the mode of the MFA distribution was 7 21 degrees. Both the mean MFA and the mode of the MFA distribution decreased as a function of the annual ring. Tangential cell walls exhibited smaller mean MFA and mode of the MFA distribution than radial cell walls. Maceration of wood material caused narrowing of the MFA distribution and removed contributions observed at around 90 degrees. In wood of both untreated and fertilised trees, the average shape of the cell cross-section changed from circular via ambiguous to rectangular as the cambial age increased. The average shape of the cell cross-section and the MFA distribution did not change as a result of fertilisation. The mass absorption coefficient for x-rays was higher in wood of fertilised trees than in that of untreated trees and wood of fertilised trees contained more of the elements S, Cl, and K, but a smaller amount of Mn. Cellulose crystallites were longer in wood of fertilised trees than in that of untreated trees. Kraft cooking caused widening and shortening of the cellulose crystallites. Tensile tests parallel to the cells showed that if the mean MFA is initially around 10 degrees or smaller, no systematic changes occur in the MFA distribution due to strain. The role of mean MFA in defining the tensile strength or the modulus of elasticity of wood was not as dominant as that reported earlier. Crystalline cellulose elongated much less than the entire samples. The Poisson ratio νca of crystalline cellulose in Norway spruce wood was shown to be largely dependent on the surroundings of crystalline cellulose in the cell wall, varying between -1.2 and 0.8. The Poisson ratio was negative in kraft cooked wood and positive in chemically untreated wood. In chemically untreated wood, νca was larger in mature wood and in latewood compared to juvenile wood and earlywood.
Resumo:
The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDPglucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-D-galactose to alpha-D-galactose and the hitter for epimerization of UDP-galactose to UDP-glucose. Absence of C albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevsiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this study was to develop practical and reliable x-ray scattering methods to study the nanostructure of the wood cell wall and to use these methods to systematically study the nanostructure of Norway spruce and Scots pine grown in Finland and Sweden. Methods to determine the microfibril angle (MFA) distribution, the crystallinity of wood, and the average size of cellulose crystallites using wide-angle x-ray scattering were developed and these parameters were determined as a function of the number of the year ring. The mean MFA in Norway spruce decreases rapidly as a function of the number of the year ring and after the 7th year ring it varies between 6° and 10°. The mean MFA of Scots pine behaves the same way as the mean MFA of Norway spruce. The thickness of cellulose crystallites for Norway spruce and Scots pine appears to be constant as a function of the number of the year ring. The obtained mean values are 32 Å for Norway spruce and 31 Å for Scots pine. The length of the cellulose crystallites was also quite constant as a function of the year ring. The mean length of the crystallites for Norway spruce was 364 Å, while the standard deviation was 27 Å. The mass fraction of crystalline cellulose in wood is the crystallinity of wood and the intrinsic crystallinity of cellulose is the crystallinity of cellulose. The crystallinity of wood increases from the 2nd year ring to the 10th year ring from the pith and is constant after the 10th year ring. The crystallinity of cellulose obtained using nuclear magnetic resonance spectroscopy was 52% for both species. The crystallinity of wood and the crystallinity of cellulose behave the same way in Norway spruce and Scots pine. The methods were also applied to studies on thermally modified Scots pine wood grown in Finland. Wood is modified thermally by heating and steaming in order to improve its properties such as biological resistance and dimensional stability. Modification temperatures varied from 100 °C to 240 °C. The thermal modification increases the crystallinity of wood and the thickness of cellulose crystallites but does not influence the MFA distribution. When the modification temperature was 230 °C and time 4 h, the thickness of the cellulose crystallites increased from 31 Å to 34 Å.
Resumo:
This paper presents the results of shaking table tests on geotextile-reinforced wrap-faced soil-retaining walls. Construction of model retaining walls in a laminar box mounted on a shaking table, instrumentation, and results from the shaking table tests are discussed in detail. The base motion parameters, surcharge pressure and number of reinforcing layers are varied in different model tests. It is observed from these tests that the response of the wrap-faced soil-retaining walls is significantly affected by the base acceleration levels, frequency of shaking, quantity of reinforcement and magnitude of surcharge pressure on the crest. The effects of these different parameters on acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are also presented. The results obtained from this study are helpful in understanding the relative performance of reinforced soil-retaining walls under different test conditions used in the experiments.
Resumo:
Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 rim. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as US, Cdse, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm(2) white light under AM1 conditions. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
A study of compression waves produced in a viscous heat-conducting gas by the impulsive start of a one-dimensional piston and by the inpulsive change of piston wall temperature is made using Laplace Transform Technique for Prandt1 number unity. Expressions for velocity, temperature and density have also been obtained using small-time expansion procedure in this case. For arbitrary Prandt1 number solutions have been developed using large-time expansion procedure. A number of graphs exhibiting the distribution of the fluid velocity, temperature and density have been drawn.
Resumo:
The concept of a fully-developed flow based on the hypothesis of selective memory is here applied to general wall-jet type flows. In the presence of a (constant) external stream, the free-stream velocity and the jet momentum flux are taken to be the chief quantities governing the development of the wall jet: two additional nondimensional parameters, representing a momentum flux Reynolds number and the relative momentum defect in the initial boundary layer, are shown to have only a secondary effect on the fully-developed flow. The standard correlations so determined are also found to predict quite well the flow development in Gartshore and Newman's experiments on wall jets in adverse pressure gradients; possible reasons for this somewhat surprising result are discussed. Finally it is shown, by application to the still-air case, that the parameters discovered in incompressible flow are, with appropriate but straightforward modification, successful in describing compressible wall jets also.
Resumo:
Test results of 24 reinforced concrete wall panels in one-way in-plane action are presented. The panels were loaded at a small eccentricity to reflect possible eccentric loading in practice. Influences of slenderness ratio, aspect ratio, vertical steel, and horizontal steel on the ultimate load are studied. An empirical equation modifying two existing methods is proposed for the prediction of ultimate load. The modified equation includes the effects of slenderness ratio, amount of vertical steel, and aspect ratio. The results predicted by the proposed modified method and five other available equations are compared with 48 test data. The proposed modified equation is found to be satisfactory and, additionally, includes the effect of aspect ratio which is not present in other methods.
Resumo:
The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear couple differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.
Resumo:
The steady laminar compressible boundary-layer swirling flow with variable gas properties and mass transfer through a conical nozzle, and a diffuser with a highly cooled wall has been studied. The partial differential equations governing the nonsimilar flow have been transformed to a system of coordinates using modified Lees transformation. The resulting equations are transformed into coordinates having finite ranges by means of a transformation which maps an infinite region into a finite region. The ensuing equations are then solved numerically using an implicit finite-difference scheme. The results indicate that the variation of the density-viscosity product across the boundary layer and mass transfer have strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying suction. The results are found to be in good agreement with those of the local nonsimilarity method but they differ appreciably from those of the local similarity method.
Resumo:
A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.