880 resultados para Thermal Properties
Resumo:
Bulk-lasses have been prepared in the TeO2-ZnO-ZnCl2 systems. Their characteristic temperatures were determined and analyzed. Raman and FT-IR spectra were used to analyze the effect of ZnCl2 on the structure and spectral properties of tellurite glasses and OH- groups in this glass system. The spectroscopic properties including absorption spectra, emission cross-sections and fluorescence lifetimes of Yb3+ in TeO2-ZnO-ZnCl2 were measured and calculated. It is demonstrated that the progressive replacement less than 20 mol% of TeO2 by ZnCl2 improves the thermal stability, removes the OH- groups, turns TeO4 bipyramidal arrangement into TeO3 (and/or TeO3+1) trigonal pyramids structures and results in the decrease of the symmetry of the structure, which increases the emission cross-sections and lifetimes. But when the content of ZnCl2 up to 30 mol%, the glass system becomes more hygroscopic and introduces more OH- groups, which decrease the emission cross-sections and shorten the lifetimes. The results show that the glass system with (TeO2)-Te-69-(ZnO)-Zn-10-20ZnCl(2)-1Yb(2)O(3) is a desirable component for active laser media for high power generation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In a three-components fluorophosphate glass system, the introduction of H3BO3 brings some valuable influence to the spectroscopic and thermal properties of the glasses. With H3BO3 increases from 2 to 20mol%, ohm(6), S-ed4113/2, FWHM, T-g and fluorescence lifetime change from 3.21 x 10(-20) cm(2), 1.77 x 10(-20) cm(2), 45 nm, 480 degrees C and 8.8 ms to 4.66 x 10(-20) cm(2), 2.11 x 10(-20) cm(2), 50 nm, 541 degrees C and 7.4 ms, respectively. sigma(abs), sigma(emi), FWHM x tau(f) x sigma(emi) has a maximum when H-3 BO3 is 11 mol%. T-g and T-x-T-g increases with H3BO3 introduction. Results showed that in fluorophosphate glasses, proper amount of B2O3 can be used as a modifier to suppress upconversion and improve spectroscopic properties, broadband property and crystallization stability of the glasses while keeps the fluorescence lifetime relatively high. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
From the effective absorption coefficient of bonded interface and the relationship of interface to reflectivity at cavity mode for double bonded vertical cavity laser, it can be seen that bonded interfaces should be positioned at the null of standing wave distribution, and the thickness of interface should be less than 20 nm. Using the finite elements method, the temperature contour map of laser can be calculated. Results showed that the influence of thin interface to thermal characteristics of VCSELS is slight, while thick interface will lead to temperature increase of active region. SEM images demonstrate that hydrophobic bonding is suitable for the fabrication of the device, while hydrophilic bonding interface is unfavorable to optical and thermal properties of devices with interface thickness larger than 40 nm.
Resumo:
An eigenfunction expansion-variational method based on a unit cell is developed to deal with the steady-state heat conduction problem of doubly-periodic fiber reinforced composites with interfacial thermal contact resistance or coating. The numerical results show a rapid convergence of the present method. The present solution provides a unified first-order approximation formula of the effective thermal conductivity for different interfacial characteristics and fiber distributions. A comparison with the present high-order results, available experimental data and micromechanical estimations demonstrates that the first-order approximation formula is a good engineering closed-form formula. An engineering equivalent parameter reflecting the overall influence of the thermal conductivities of the matrix and fibers and the interfacial characteristic on the effective thermal conductivity, is found. The equivalent parameter can greatly simplify the complicated relation of the effective thermal conductivity to the internal structure of a composite. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
<正>The so-called one dimensional(1D) nanostructures or wirelike nanoentities,such as nanowire(NW),nanotube(NT),and nanobelt(NB) have attracted much interest in scientific community because of their remarkable mechanical,electrical,thermal properties and potential applications in wide variety of devices.The mechanical failure of 1D nanostructures can lead to the malfunction or even failure of entire device and 1D nanostructures may also have size-dependent properties. Therefore,an accurate measurement of their mechanical properties is of
Resumo:
A method was adopted to fix a series of polymers of PE-b-PEO with different PEO/PE segments on the chains of LLDPE. Maleic anhydride (MA) reacting with hydroxyl group of PE-b-PEO (mPE-b-PEO) was used as the intermediate. The structures of intermediates and graft copolymers were approved by H-1 NMR and FTIR. XPS analysis revealed a great amount of oxygen on the surface of grafted copolymers although the end group of PEO was fixed on the LLDPE chains through MA. Thermal properties of the graft copolymers as determined by differential scanning calorimetry (DSC) showed that PE segments in the grafted monomers could promote the heterogeneous nucleation of the polymer, increase T., and crystal growth rate.
Resumo:
Two series of sulfonated poly(phenylquinoxaline)s (SPPQ-x and SPPQ(O)-x, x refers to molar percentage of sulfonated tetraamine monomer) were first synthesized from a sulfonated tetraamine (4,4'-bis(3,4-diaminophenoxy)biphenyl-3.3'-disulfonic acid) and two aromatic bisbenzils (4-phenylglyoxalylbenzil and p,p'-oxydibenzil) in a mild condition. The structures of SPPQ-x and SPPQ(0)-x were characterized by IR and H-1 NMR spectra. The properties of these polymer films, such as water uptake, water swelling ratio, proton conductivity, thermal properties, methanol permeability, hydrolytic and oxidative stability were also investigated. The resulting polymers generally showed good solubility in DMAc and DMSO. Flexible and tough membranes with high mechanical strength were prepared. They show very high thermal, thermooxidative, hydrolytic stabilities and low methanol permeability. SPPQ-100 with the IEC value (2.41 mmol/g) displays the conductivity of 0.1 S/cm and a swelling ratio of 7.3% at 100 degrees C.
Resumo:
Poly(L-lactide) (PLA)/silica (SiO2) nanocomposites containing 1, 3, 5, 7, and 10 Wt % SiO2 nanoparticles were prepared by melt compounding in a Haake mixer. The phase morphology, thermomechanical properties, and optical transparency were investigated and compared to those of neat PLA. Scanning electron microscopy results show that the SiO2 nanoparticles were uniformly distributed in the PLA matrix for filler contents below 5 wt %, whereas some aggregates were detected with further increasing filler concentration. Differential scanning calorimetry analysis revealed that the addition Of SiO2 nanoparticles not only remarkably accelerated the crystallization speed but also largely improved the crystallinity of PLA. An initial increase followed by a decrease with higher filler loadings for the storage modulus and glass-transition temperature were observed according to dynamic mechanical analysis results. Hydrogen bonding interaction involving C=O of PLA with Si-OH Of SiO2 was evidenced by Fourier transform infrared analysis for the first time.
Resumo:
Finding a Suitable plasticizer for polylactide (PLA) is necessary to overcome its brittleness and enlarge its range of applications. In this study, commercial PLA was melt-blended with a new plasticizer, an ethylene glycol/propylene glycol random copolymer [poly(ethylene glycol-co-propylene glycol) (PEPG)] with a typical number-average molecular weight of 1.2 kDa and an ethylene glycol content of 78.7 mol %. The thermal properties, crystallization behavior, and mechanical properties of the quenched blends and the properties of the blends after storage for 2 months under the ambient conditions were investigated in detail. The advantage of using PEPG is that it does not crystallize at room temperature and has good compatibility with PLA. The quenched PLA/PEPG blends were homogeneous and amorphous systems. With an increase in the PEPG content (5-20%), the glass-transition temperature, tensile strength, and modulus of the blends decreased, whereas the elongation at break and crystallizability increased dramatically. The cold crystallization of PLA resulted in phase separation of the PLA/PEPG blends by annealing of the blends at the crystallization temperature.
Resumo:
A series of monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s (OFVs) with fluorene units up to 11 has been synthesized following a divergent approach. Chain length was found to affect not only photophysical properties but also thermal properties. Absorption and photoluminescence spectra are red-shifted with increasing chain length. The effective conjugated length has been extrapolated to be as long as 19 fluorene vinylene units, indicative of a well-conjugated system. With the number of fluorene units > 5, the oligomers exhibit nematic mesomorphism. Glass transition temperature (T-g) and clearing point temperature (T-c) increase with increasing molecular length and with those of OFV11 up to 71 and 230 degrees C, respectively. The oligomers can form uniform films by solution casting for fabrication of light-emitting diodes. With a device structure of ITO/ PEDOT:PSS/OFV11/Ca/Al, a current efficiency of 0.8 cd.A(-1) at a brightness of 1300 cd.m(-2) along with a maximum brightness of 2690 cd.m(-2) have been realized. This performance is notably superior to that of the corresponding polymer.
Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit
Resumo:
A new synthetic procedure was elaborated allowing the preparation of semiaromatic dianhydride. N-Methyl protected 4-chlorophthalic anhydride was nitrated with HNO3 to produce N-methyl-4-chloro-5-nitrophthalimide (1). The aromatic nucleophilic substitution reaction between 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1-spirobisindane and 1 afforded spirobisindane-linked bis(N-methylphthalimide) (2), which was hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). The latter was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The properties of polyimides such as inherent viscosity, solubility, UV transparency and thermal stability were investigated to illustrate the contribution of the introduction of spirobisindane groups into the polyimide backbone. The resulting polyimides were readily soluble in polar solvents such as chloroform, THF and N-methyl-2-pyrrolidone. The glass-transition temperatures of these polyimides were in the range of 254-292 degrees C. The tensile strength, elongation at break, and Young's modulus of the polyimide film were 68.8-106.6 MPa, 5.9-9.8%, 1.7-2.0 GPa, respectively. The polymer films were colorless and transparent with the absorption cutoff wavelength at 286-308 nm.
Resumo:
A novel isomeric polyimide/SiO2 hybrid material was successfully prepared through sol-gel technique, and its structure, thermal properties and nano-indenter properties were investigated. First, 3-[(4-phenylethynyl)phthalimide]propyl triethoxysilane (PEIPTES) was successfully synthesized, its structure was characterized by elemental analysis, FT-IR and C-13 NMR. The researches on solubility and thermal properties of PEIPTES show that it can be used for modifying nano-SiO2 precursor. Nano-SiO2 precursor was synthesized by tetraethoxysilane (TECS) through sol-gel technique. Then the PEIPTES solution and the nano-SiO2 precursor were mixed for 6 h to let the PEIPTES molecules react with the nano-SiO2 precursor, and modified nano-SiO2 precursor was obtained. The modified reaction was confirmed by the analyses of FT-IR. At last, isomeric polyimide/SiO2 hybrid material was produced by using isomeric polyimide resin solution and the modified nano-SiO2 precursor after heat treatment process. The structure analysis by SEM indicated that SiO2 particles dispersed in isomeric polyimide matrix homogeneously with nanoscale. Thermogravimetric analyzer, dynamic mechanical thermal analyzer and nano-indenter XP was employed to detect the properties of the materials, the results demonstrated that isomeric polyimide/SiO2 hybrid material has much better thermal properties and nano-indenter properties than those of isomeric polyimide.
Resumo:
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was irradiated by Co-60 gamma-rays (doses of 50, 100 and 200kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one-step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight-loss step change. The onset degradation temperature (T-o) and the temperature of maximum weight-loss rate (T-p) of control and irradiated PHBV were in line with the heating rate (degreesC min(-1)). T-o and T-p of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that Co-60 gamma-radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (T-m) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness.
Resumo:
A series of novel polyimide/polydiphenylsiloxane) (PI/PDDS) composite films with different contents of DDS were prepared using sol-gel method. The noncrosslinked PI-DDS and crosslinked PIS-DDS were synthesized through cohydrolysis and condensation between DDS and polyamic acid (PAA) or aminopropyltriethoxysilane(APTES)-terminated polyamic acid (PAAS). All the composite films have high thermal stability near pure PI. Field emission scanning electron microscopy (FE-SEM) study shows that the polysiloxane from hydrolyzed DDS well dispersed in polyimide matrix, without macroscopic separation for the composite films with low content of DDS, while large domain of polysiloxane was formed in films with high DDS content. The microstructure of composite films is in accordance with the transparency of corresponding films. X-ray study shows the PDDS is amorphous in PI matrix. The introduction of DDS into PI can improve the elongation at break and at the same time, the composite films still remained with higher modulus and tensile strength. The density and water absorption of the composite films decreased with the increasing DDS content. The composite films with DDS content below 10 wt % exhibit good solvent resistance.
Resumo:
This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.