970 resultados para Tert-amyl alcohols
Resumo:
The vapor pressure of four liquid 1H,1H-perfluoroalcohols (CF3(CF2)n(CH2)OH, n ¼ 1, 2, 3, 4), often called odd-fluorotelomer alcohols, was measured as a function of temperature between 278 K and 328 K. Liquid densities were also measured for a temperature range between 278 K and 353 K. Molar enthalpies of vaporization were calculated from the experimental data. The results are compared with data from the literature for other perfluoroalcohols as well as with the equivalent hydrogenated alcohols. The results were modeled and interpreted using molecular dynamics simulations and the GC-SAFT-VR equation of state.
Resumo:
The present research work focused on the valorisation and upgrading of bio-ethanol over heterogeneous catalysts in a lab-scale continuous gas-flow system. In the Unibo laboratories, catalytic tests have been carried out in the temperature range 300-600°C by feeding an ethanol/He mixture in the reactor. After choosing the reaction conditions, ion-exchanged hydroxyapatite with transition metals (i.e., Fe, Cu) and alkaline earth metal (i.e., Sr) have been synthesized and tested. The Sr-HAP catalyst led to the formation of a complex reaction mixture the composition of which need further optimization in order to fill the requisite to be used as fuel-blend. Then, some zirconium-oxide based catalysts have been prepared through two different methods, precipitation and hydrothermal, by varying some synthetic parameters (i.e., pH, the nature of the base) and by adding a transition metal as dopant agent (i.e., Ti and Y). The presence of a dopant into the zirconia structure favoured the stabilization of the tetragonal or cubic phase against the monoclinic one. Interestingly, 5%mol Ti-doped zirconia exhibited a different catalytic behaviour yielding diethyl ether as major product at 300°C, while all the others samples produced mainly ethylene. Then, the effect of acid-base properties of sepiolite, using alkali metals (i.e., Na, K, Cs) with different metal loading (i.e., 2, 4, 5, 7, 14 wt%) as promoters, and of the redox properties of sepiolite-supported CuO or NiO, on the catalytic conversion of ethanol into n-butanol has been investigated. Thermal treated sepiolite samples mainly acted as acid catalyst, yielding preferentially the dehydration products of ethanol (ethylene and diethyl ether). Best results in terms of activity (ethanol conversion, 59%) and n-butanol selectivity (30%) where obtained at 400ºC and a contact time, W/F, of 2 g/mL·s over the catalyst consisting of sepiolite calcined at 500ºC modified with 7 wt% of cesium.
Resumo:
In the current study, a new approach has been developed for correcting the effect that moisture reduction after virgin olive oil (VOO) filtration exerts on the apparent increase of the secoiridoid content by using an internal standard during extraction. Firstly, two main Spanish varieties (Picual and Hojiblanca) were submitted to industrial filtration of VOOs. Afterwards, the moisture content was determined in unfiltered and filtered VOOs, and liquid-liquid extraction of phenolic compounds was performed using different internal standards. The resulting extracts were analyzed by HPLC-ESI-TOF/MS, in order to gain maximum information concerning the phenolic profiles of the samples under study. The reduction effect of filtration on the moisture content, phenolic alcohols, and flavones was confirmed at the industrial scale. Oleuropein was chosen as internal standard and, for the first time, the apparent increase of secoiridoids in filtered VOO was corrected, using a correction coefficient (Cc) calculated from the variation of internal standard area in filtered and unfiltered VOO during extraction. This approach gave the real concentration of secoiridoids in filtered VOO, and clarified the effect of the filtration step on the phenolic fraction. This finding is of great importance for future studies that seek to quantify phenolic compounds in VOOs.
Resumo:
Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.
Resumo:
Chlorophenylpiperazines (CPP) are psychotropic drugs used in nightclub parties and are frequently used in a state of sleep deprivation, a condition which can potentiate the effects of psychoactive drugs. This study aimed to investigate the effects of sleep deprivation and sleep rebound (RB) on anxiety-like measures in mCPP-treated mice using the open field test. We first optimized our procedure by performing dose-effect curves and examining different pretreatment times in naïve male Swiss mice. Subsequently, a separate cohort of mice underwent paradoxical sleep deprivation (PSD) for 24 or 48h. In the last experiment, immediately after the 24h-PSD period, mice received an injection of saline or mCPP, but their general activity was quantified in the open field only after the RB period (24 or 48h). The dose of 5mgmL(-1) of mCPP was the most effective at decreasing rearing behavior, with peak effects 15min after injection. PSD decreased locomotion and rearing behaviors, thereby inhibiting a further impairment induced by mCPP. Plasma concentrations of mCPP were significantly higher in PSD 48h animals compared to the non-PSD control group. Twenty-four hours of RB combined with mCPP administration produced a slight reduction in locomotion. Our results show that mCPP was able to significantly change the behavior of naïve, PSD, and RB mice. When combined with sleep deprivation, there was a higher availability of drug in plasma levels. Taken together, our results suggest that sleep loss can enhance the behavioral effects of the potent psychoactive drug, mCPP, even after a period of rebound sleep.
Resumo:
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5' spliced leader (SL) cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Resumo:
Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.
Resumo:
The aim of this study was to compare the performance of the following techniques on the isolation of volatiles of importance for the aroma/flavor of fresh cashew apple juice: dynamic headspace analysis using PorapakQ(®) as trap, solvent extraction with and without further concentration of the isolate, and solid-phase microextraction (fiber DVB/CAR/PDMS). A total of 181 compounds were identified, from which 44 were esters, 20 terpenes, 19 alcohols, 17 hydrocarbons, 15 ketones, 14 aldehydes, among others. Sensory evaluation of the gas chromatography effluents revealed esters (n = 24) and terpenes (n = 10) as the most important aroma compounds. The four techniques were efficient in isolating esters, a chemical class of high impact in the cashew aroma/flavor. However, the dynamic headspace methodology produced an isolate in which the analytes were in greater concentration, which facilitates their identification (gas chromatography-mass spectrometry) and sensory evaluation in the chromatographic effluents. Solvent extraction (dichloromethane) without further concentration of the isolate was the most efficient methodology for the isolation of terpenes. Because these two techniques also isolated in greater concentration the volatiles from other chemical classes important to the cashew aroma, such as aldehydes and alcohols, they were considered the most advantageous for the study of cashew aroma/flavor.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
The use of antioxidants either to prevent or retard food's lipids oxidation was approved after inquires that verified their security within a daily intake limit. In this study, the methodology was developed and validated for the analysis of synthetic antioxidants: propylgallate (PG), tert-butylhydroquinone (TBHQ), butylhydroxyanisole (BHA), octylgallate (OG) and butylhydroxytoluene (BHT) in vegetables oils, margarine and hydrogenated fats by high performance liquid chromatographic. The methodology revealed itself efficient, with recovery rates above 90% for all antioxidant substances, besides good linearity in concentration range of 40-240 mg kg-1 (r = 0,999), repeatability with CV < 3,7% and limit of quantification 16.55, 10.32, 1.40, 3.76 and 9.30 mg/kg for BHT, BHA, PG, OG and TBHQ, respectively.
Resumo:
A series of nine new [3-(disubstituted-phosphate)-4,4,4-trifluoro-butyl]-carbamic acid ethyl esters (phosphate-carbamate compounds) was obtained through the reaction of (4,4,4-trifluoro-3-hydroxybut-1-yl)-carbamic acid ethyl esters with phosphorus oxychloride followed by the addition of alcohols. The products were characterized by ¹H, 13C, 31P, and 19F NMR spectroscopy, GC-MS, and elemental analysis. All the synthesized compounds were screened for acetylcholinesterase (AChE) inhibitory activity using the Ellman method. All compounds containing phosphate and carbamate pharmacophores in their structures showed enzyme inhibition, being the compound bearing the diethoxy phosphate group (2b) the most active compound. Molecular modeling studies were performed to investigate the detailed interactions between AChE active site and small-molecule inhibitor candidates, providing valuable structural insights into AChE inhibition.
Resumo:
Results obtained in a pilot-scale unit designed for COD removal and p-TBC (p-tert-butylcatechol) recovery from a butadiene washing stream (pH 14, 200,000 mg COD L-1, highly toxic) at a petrochemical industry are presented. By adding H3PO4, phase separation is achieved and p-TBC is successfully recovered (88 g L-1 of washing stream). Information (time for phase separation and organic phase characterization) was gathered for designing a future industrial unit. The estimated heat generation rate was 990 kJ min-1 and 15 min were enough to promote phase separation for a liquid column of approximately 1.15 m.
Resumo:
Secondary alcohol concentrations in sugar cane spirits from different origins were determined by gas chromatography. A great variation in the concentration of the secondary alcohols was found in these spirits. Of the 33 brands analyzed, 8 of them were found to be out of conformity with the legislation. Sec butanol, for which the maximum allowed concentration level is 100 mg.L-1 in absolute ethanol, was found within a concentration range between 5 mg.L-1, the limit of quantitation (LQ) and 408 mg.L-1 in absolute ethanol. Sugar cane samples from Salinas, MG, were the only ones that exhibited self similarity because of the low concentrations of n-butanol and n-amylic alcohol (< limit of detection LD).
Resumo:
This paper describes an experiment to teach the principles of gas chromatography exploring the boiling points and polarities to explain the elution order of a series of alcohols, benzene and n-propanone, as well as to teach the response factor concept and the internal standard addition method. Retention times and response factors are used for qualitative identification and quantitative analysis of a hypothetical contamination source in a simulated water sample. The internal standard n-propanol is further used for quantification of benzene and n-butanol in the water sample. This experiment has been taught in the instrumental analysis course offered to chemistry and oceanography students.