913 resultados para Television presentation (e.g. of films, ballet, theatre)
Resumo:
Biodegradable films based on cassava starch and with addition of natural antimicrobial ingredients were prepared using the casting technique. The tensile properties tensile strength (TS) [MPa] and percent elongation (E) at break [%] and the water vapor transmission (WVT) of the biodegradable films were evaluated and compared with the control (without antimicrobial ingredients). The evaluation of the Colony Forming Units per gram [CFU/g] of pan bread slices packed with the best biodegradable films, in terms of packaging performance, was also determined. The addition onto the matrix of only clove and cinnamon powders could reduce the films WVT when compared to the control, however TS and E were lower than the control and the effect of cinnamon was milder regarding this property. Since water activity of the pan bread slices packed with the biodegradable films increased considerably during the storage period, the antimicrobial effect could not be clearly determined. (C) 2010 Published by Elsevier Ltd.
Resumo:
Proteins contain hydrophilic groups, which can bind to water molecules through hydrogen bridges, resulting in water vapour adsorption. An increase in the degree of cross-linking can be a method to improve the cohesiveness force and functional properties of protein-based films. Thus, the objective of this work was to evaluate the effect of chemical treatment of gelatin with formaldehyde and glyoxal on the mechanical properties, water vapour permeability (WVP) and water vapour sorption characteristics of gelatin-based films. Films were produced using gelatin, with and without chemical treatment. The formaldehyde treatments caused a significant increase in the tensile strength and a reduction in the WVP of films. The Guggenheim-Anderson-De Boer and Halsey models could be used to model the sorption isotherms of films. It was observed that an increase in temperature produced a decrease in water sorption, and the chemical modifications did not affect the monolayer moisture content. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The aim of this study was to evaluate the effects of the addition of surfactants sodium stearoyl lactate (SSL) and sucrose ester (SE) on the functional properties of films produced with polysaccharides mixtures (methylcellulose/glucomannan/pectin in 1/4/1 ratio, respectively) and gelatin. The films were produced by the casting method and characterized for their water vapor permeability (WVP), mechanical (tensile strength and elongation to break point), morphological and optical properties. Films with low WVP were obtained with surfactants. Addition of SE to the films with polysaccharide/gelatin ratio of 90/10 showed improved mechanical properties. Films presented smooth surfaces with micro voids and lumpiness, depending on the surfactant tested. Surfactants increased the opacity of the films by a factor of 1-3%. All film properties were dependent on the surfactant affinity for the biopolymer matrix. SE presented more affinity for biopolymer matrix containing high polysaccharide proportion, and SSL presented more affinity for polymer matrix containing high gelatin proportion. The addition of surfactants decreased the water vapor permeability of the films, increasing their hydrophobic character.
Resumo:
The electrostatic layer-by-layer technique has been exploited as an useful strategy for fabrication of nanostructured thin films, in which specific properties can be controlled at the molecular level. Ferrofluids consist of a colloidal suspension of magnetic grains (with only a few nanometers of diameter) with present interesting physical properties and applications, ranging from telecommunication to drug delivery systems. In this article, we developed a new strategy to manipulate ferrofluids upon their immobilization in nanostructured layered films in conjunction with conventional polyelectrolytes using the layer-by-layer technique. We investigated the morphological, optical, and magnetic properties of the immobilized ferrofluid as a function of number of bilayers presented in the films. Ferrofluid/polyelectrolyte multilayers homogeneously covered the substrates surface, and the magnetic and optical properties of films exhibited a linear dependence on the number of bilayers adsorbed.
Resumo:
Fe-Pd alloy films have been prepared by electrochemical deposition from an alkaline electrolyte containing Fe sulfate, Pd chloride and 5-sulfosalicylic acid onto polycrystalline titanium substrates. The as-deposited films were nanocrystalline and magnetically soft (coercivity similar to 25 Oe). L1(0) Fe-Pd films with a (111) preferred orientation were obtained by post-deposition thermal annealing of films with composition about 37 at% Fe in an (Ar + 5% H-2) gas flow at 500 degrees C. Such films exhibit hard magnetic properties, with a coercivity up to 1880 Oe, and a slightly anisotropic magnetic response, with a larger in-plane remanence. Preliminary magnetic investigations support magnetization switching through pinning of domain walls. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Langmuir films of a tetracarboxylic perylene derivative and polypyrrole display condensed surface pressure isotherms that are shifted when Cu2+ ions are added to the ultrapure water subphase. These films were transferred onto interdigitated gold electrodes leading to Y-type Langmuir-Blodgett (LB) films. The electrodes modified with 5-layer LB films were immersed into a flask with ultrapure water and water containing Cu2+ ions at concentrations ranging from mM to muM. Impedance measurements indicated a distinct electrical response for the two types of films. Although the materials chosen have no specificity for ionic metals, they can be combined for detecting trace levels of Cu2+, which may be exploited in water quality monitoring. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Oriented LiNbO3 thin films were prepared using a polymeric precursor solution deposited on (0001) sapphire substrate by spin coating and crystallized in a microwave oven. Crystallization of the films was carried out in a domestic microwave oven. The influence of this type of heat treatment on the film orientation was analyzed by X-ray diffraction and electron channeling patterns, which revealed epitaxial growth of films crystallized at 550 and 650 degreesC for 10 min. A microstructural study indicated that the films treated at temperatures below 600 degreesC were homogeneous and dense, and the optical properties confirmed the good quality of these films. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The nonlinear refractive index, n(2), of films based on the new glass system Sb(2)O(3)-Sb(2)S(3) was measured at 1064 nm with laser pulses of 15 ps, using a single-beam nonlinear image technique in presence of a phase object. The films were prepared from bulk glasses by RF-sputtering. A large value of n(2) = 3 x 10-(15) m(2)/W, which is three orders of magnitude larger than for CS(2), was determined. The result shows the strong potential of antimony-sulfide glass films for integrated nonlinear optics. (c) 2005 Elsevier B.V. All rights reserved.