986 resultados para Strictly hyperbolic polynomial
Resumo:
This paper presents necessary and sufficient conditions to turn a linear time-invariant system with p outputs, m inputs, p greater-than-or-equal-to m and using only inputs and outputs measurements into a Strictly Positive Real (SPR).Two results are presented. In the first, the system compensation is made by two static compensators, one of which forward feeds the outputs and the second back feeds the outputs of the nominal system.The second result presents conditions for the Walcott and Zak variable structure observer-controller synthesis. In this problem, if the nominal system is given by {A,B,C}, then the compensated system is given by {A+GC,B,FC} where F and G are the constant compensation matrices. These results are useful in the control system with uncertainties.
Resumo:
In this work we consider the dynamic consequences of the existence of infinite heteroclinic cycle in planar polynomial vector fields, which is a trajectory connecting two saddle points at infinity. It is stated that, although the saddles which form the cycle belong to infinity, for certain types of nonautonomous perturbations the perturbed system may present a complex dynamic behavior of the solutions in a finite part of the phase plane, due to the existence of tangencies and transversal intersections of their stable and unstable manifolds. This phenomenon might be called the chaos arising from infinity. The global study at infinity is made via the Poincare Compactification and the argument used to prove the statement is the Birkhoff-Smale Theorem. (c) 2004 WILEY-NCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. We give a method which lets us prove that there are planar polynomial centers of degree l with at least 2[(l - 2)/2] critical periods as well as study concrete families of potential, reversible and Lienard centers. This last case is studied in more detail and we prove that the number of critical periods obtained with our approach does not. increases with the order of the perturbation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
For any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction.
Resumo:
Let 0 < j < m ≤ n. Kolmogoroff type inequalities of the form ∥f(j)∥2 ≤ A∥f(m)∥ 2 + B∥f∥2 which hold for algebraic polynomials of degree n are established. Here the norm is defined by ∫ f2(x)dμ(x), where dμ(x) is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we characterize completely the positive constants A and B, for which the Landau weighted polynomial inequalities ∥f′∥ 2 ≤ A∥f″∥2 + B∥f∥ 2 hold. © Dynamic Publishers, Inc.
Resumo:
Second-order polynomial models have been used extensively to approximate the relationship between a response variable and several continuous factors. However, sometimes polynomial models do not adequately describe the important features of the response surface. This article describes the use of fractional polynomial models. It is shown how the models can be fitted, an appropriate model selected, and inference conducted. Polynomial and fractional polynomial models are fitted to two published datasets, illustrating that sometimes the fractional polynomial can give as good a fit to the data and much more plausible behavior between the design points than the polynomial model. © 2005 American Statistical Association and the International Biometric Society.
Resumo:
In this work we introduce a mapping between the so-called deformed hyperbolic potentials, which are presenting a continuous interest in the last few years, and the corresponding nondeformed ones. As a consequence, we conclude that these deformed potentials do not pertain to a new class of exactly solvable potentials, but to the same one of the corresponding nondeformed ones. Notwithstanding, we can reinterpret this type of deformation as a kind of symmetry of the nondeformed potentials. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present new sharp inequalities for the Maclaurin coefficients of an entire function from the Laguerre-Pólya class. They are obtained by a new technique involving the so-called very hyperbolic polynomials. The results may be considered as extensions of the classical Turán inequalities. © 2010 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we obtain a result on simultaneous linearization for a class of pairs of involutions whose composition is normally hyperbolic. This extends the corresponding result when the composition of the involutions is a hyperbolic germ of diffeomorphism. Inside the class of pairs with normally hyperbolic composition, we obtain a characterization theorem for the composition to be hyperbolic. In addition, related to the class of interest, we present the classification of pairs of linear involutions via linear conjugacy. © 2012 Elsevier Masson SAS.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Artificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.
Resumo:
Verificar a influência de fatores do meio ambiente sobre características de produção e reprodução em grupos genéticos de bovinos leiteiros explorados em algumas fazendas nos municípios de Irituia e Mãe do rio no Nordeste Paraense. Foi utilizada uma média de 454 animais em lactação mestiças de Holandês, Pardo-Suíça e Girolando pertencentes a duas fazendas com sistema de criação semi-intensivo na época menos chuvosa. As médias e desvio-padrão para produção de leite total foram iguais a 1097,36 ± 330,47 Kg, com coeficiente de variação igual a 25,64% sendo que o grupo genético Holandesa, a época de parto menos chuvosa e o ano de 2007 apresentaram maior produção. O período de lactação apresentou efeito linear e crescente sobre a produção de leite total. O período de lactação apresentou média e desvio-padrão iguais a 218,17 ± 43,17 dias, a maior média para o período de lactação foi observada na época mais chuvosa e a média do período de lactação diminuiu no decorrer dos anos 2007 e 2008. A média e desvio padrão de intervalo entre partos encontrado no rebanho foi igual a 398,975 ± 60,85 dias. A época menos chuvosa apresentou uma média de intervalo entre partos menor que época mais chuvosa e a média de intervalo entre partos foi reduzindo a partir de 2006. A média de idade ao primeiro parto encontrado foi de 38,57 ± 5,81 meses. Os coeficientes de determinação foram maiores que 0,85 (R2a > 0,85), sendo que para o grupo genético Holandesa, os ajustes foram melhores em relação aos ajustes dos outros dois grupos genéticos. Para o grupo genético Girolando, o formato da curva de lactação diferiu dos outros dois grupos genéticos dificultando o ajuste pelas funções Gama Incompleta, Linear Hiperbólica e Polinomial Inversa. Os ajustes promovidos pela função polinomial inversa apresentaram ligeiro desvio em relação às outras duas funções. O grupo genético Holandesa apresentou produção ao pico e persistência um pouco mais elevados em relação aos outros grupos genéticos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)