543 resultados para Sputtering reativo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opto-electronic properties of copper zinc tin sulfide can be tuned to achieve better cell efficiencies by controlled incorporation of selenium. In this paper we report the growth of Cu2ZnSn(S,Se)4 (CZTSSe) using a hybrid process involving the sequential evaporation of Zn and sputtering of the sulfide precursors of Cu and Sn, followed by a selenization step. Two approaches for selenization were followed, one using a tubular furnace and the other using a rapid thermal processor. The effects of annealing conditions on the morphological and structural properties of the films were investigated. Scanning electron microscopy and energy dispersive spectroscopy were employed to investigate the morphology and composition of the films. Structural analyses were done using X-ray diffraction (XRD) and Raman spectroscopy. Structural analyses revealed the formation of CZTSSe. This study shows that regardless of the selenization method a temperature above 450 °C is required for conversion of precursors to a compact CZTSSe layer. XRD and Raman analysis suggests that the films selenized in the tubular furnace are selenium rich whereas the samples selenized in the rapid thermal processor have higher sulfur content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Nanotecnologias e Nanociências

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Ciência Política e Relações Internacionais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia de Materiais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Garlic has a wide range of actions, including antibacterial, antiviral, antifungal, antiprotozoal and anthelmintic actions. This antiparasitic activity has been attributed to allicin, which is the main constituent of garlic. The present study aimed to investigate the in vitro activity of allicin on the tegument of adult Schistosoma mansoni worms using scanning electron microscopy. METHODS: Swiss Webster mice were infected with S. mansoni cercariae (100 per mouse) and sacrificed 50 days later to acquire the adult worms. These worms were collected by perfusion and placed in RPMI medium 1,640 at 37°C before transferring to RPMI media containing 0 (control), 5, 10, 15 and 20mg/mL of allicin, where they were incubated for 2h. The worms were fixed in 2.5% glutaraldehyde solution, washed twice, post-fixed in osmium tetroxide, washed twice and then dehydrated with ascending grades of ethanol. The samples were air-dried, mounted on stubs, gold coated in an ion sputtering unit and viewed using a scanning electron microscope. RESULTS: A concentration of 5mg/mL caused wrinkling in the tegument; a concentration of 10mg/mL resulted in changes to tubercles and loss or modification of spines. With 15 and 20mg/mL increasing damage to the tegument could be seen, such as vesicle formation and the presence of ulcers. CONCLUSIONS: These findings demonstrate the effect of allicin on adult S. mansoni worms and indicate that most of the changes occur at concentrations greater than that normally indicated for treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadium dioxide (VO2) is a promising material with large interest in construction industry and architecture, due to its thermochromic properties. This material may be used to create "smart" coatings that result in improvements in the buildings energy efficiency, by reducing heat exchanges and, consequently, the need for acclimatization. In this work, VO2 thin films and coatings were produced and tested in laboratory, to apply in architectural elements, such as glass, rooftop tiles and exterior paints. Thin films were produced by RF magnetron sputtering and VO2 nanoparticles were obtained through hydrothermal synthesis, aiming to create "smart" windows and tiles, respectively. These coatings have demonstrated the capability to modulate the transmittance of infrared radiation by around 20%. The VO2 nanoparticle coatings were successfully applied on ceramic tiles. The critical temperature was reduced to around 40ºC by tungsten doping. Ultimately, two identical house models were built, in order to test the VO2 coatings, in real atmospheric conditions during one of the hottest months of the year, in Portugal – August.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work will discuss the use of different paper membranes as both the substrate and dielectric for field-effect memory transistors. Three different nanofibrillated cellulose membranes (NFC) were used as the dielectric layer of the memory transistors (NFC), one with no additives, one with an added polymer PAE and one with added HCl. Gallium indium zinc oxide (GIZO) was used as the device’s semiconductor and gallium aluminium zinc oxide (GAZO) was used as the gate electrode. Fourier transform infrared spectroscopy (FTIR) was used to access the water content of the paper membranes before and after vacuum. It was found that the devices recovered their water too quickly for a difference to be noticeable in FTIR. The transistor’s electrical performance tests yielded a maximum ION/IOFF ratio of around 3,52x105 and a maximum subthreshold swing of 0,804 V/decade. The retention time of the dielectric charge that grants the transistor its memory capabilities was accessed by the measurement of the drain current periodically during 144 days. During this period the mean drain current did not lower, leaving the retention time of the device indeterminate. These results were compared with similar devices revealing these devices to be at the top tier of the state-of-the-art.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroactive polymers are one of the most interesting class of polymers used as smart materials in various applications, such as the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties, conductivity and antibacterial characteristics, through Ag inclusions. This work reports on Ag-TiNx electrodes, deposited by d. c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), PVDF, the all-round best piezoelectric polymer.. Composition of the electrodes was assessed by microanalysis X-ray system (EDS - energy dispersive spectrometer). The XRD results revealed that the deposition conditions preserve the polymer structure and suggested the presence of crystalline fcc-TiN phase and fcc-Ag phase in samples with N2 flow above 3 sccm. According to the results obtained from SEM analysis, the coatings are homogeneous and Ag clusters were found for samples with nitrogen flow above 3 sccm. With increasing nitrogen flow, the sheet resistivity tend to be lower than the samples without nitrogen, leading also to a decrease of the piezoelectric response. It is concluded that the deposition conditions do significantly affect the piezoelectric polymer, which maintain its characteristics for sensor/actuator applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline AlN coatings deposited on Ti-electrodes films were sputtered by using nitrogen both as reactive gas and sputtering gas, in order to obtain high purity coatings with appropriate properties to be further integrated into wear resistance coatings as a piezoelectric monitoring wear sensor. The chemical composition, the structure and the morphology of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy techniques. These measurements show the formation of highly (101), (102) and (103) oriented AlN films with good piezoelectric and mechanical properties suitable for applications in electronic devices. Through the use of lower nitrogen flow a densification of the AlN coating occurs in the microstructure, with an improvement of the crystallinity along with the increase of the hardness. Thermal stability of aluminum nitride coatings at high temperature was also examined. It was found an improvement of the piezoelectric properties of the highly (10x) oriented AlN films which became c-axis (002) oriented after annealing. The mechanical behavior after heat treatment shows an important enhancement of the surface hardness and Young’s modulus, which decrease rapidly with the increase of the indentation depth until approach constant values close to the substrate properties after annealing. Thus, thermal annealing energy promotes not only the rearrangement of Al–N network, but also the occurrence of a nitriding process of unsaturated Al atoms which cause a surface hardening of the film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A investigação fitoquímica das cascas do caule de Sterculia striata St. Hil. et Naudin, através de métodos cromatográficos, conduziu ao isolamento dos esteróides sitosterol, estigmasterol e sitosterol-3-O-β-D-glicopiranosídeo, além de quatro triterpenóides pentacíclicos, o lupeol, 3-β-O-acil lupeol, lupenona e ácido betulínico. As estruturas desses compostos foram identificadas por análise dos espectros de RMN ¹H e 13C e comparações com dados da literatura. Para determinação do teor de fenóis totais do extrato etanólico de S. striata utilizou-se o reativo Folin Ciocalteu, enquanto na avaliação da atividade antioxidante empregou-se o radical livre DPPH. Este é o primeiro trabalho descrevendo o estudo químico com as cascas do caule desta espécie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlOx layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlOx(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlOx thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/ intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are 102 and 5 105 , respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.