920 resultados para Spherical Geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises, exam questions and solutions for a fourth year hyperbolic geometry course. Diagrams for the questions are all together in the support.zip file, as .eps files

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente documento es un estudio detallado del problema conocido bajo el título de Problema de Alhacén. Este problema fue formulado en el siglo X por el filósofo y matemático árabe conocido en occidente bajo el nombre de Alhacén. El documento hace una breve presentación del filósofo y una breve reseña de su trascendental tratado de óptica Kitab al-Manazir. A continuación el documento se detiene a estudiar cuidadosamente los lemas requeridos para enfrentar el problema y se presentan las soluciones para el caso de los espejos esféricos (convexos y cóncavos), cilíndricos y cónicos. También se ofrece una conjetura que habría de explicar la lógica del descubrimiento implícita en la solución que ofreció Alhacén. Tanto los lemas como las soluciones se han modelado en los software de geometría dinámica Cabri II-Plus y Cabri 3-D. El lector interesado en seguir dichas modelaciones debe contar con los programas mencionados para adelantar la lectura de los archivos. En general, estas presentaciones constan de tres partes: (i) formulación del problema (se formula en forma concisa el problema); (ii) esquema general de la construcción (se presentan los pasos esenciales que conducen a la construcción solicitada y las construcciones auxiliares que demanda el problema), esta parte se puede seguir en los archivos de Cabri; y (iii) demostración (se ofrece la justificación detallada de la construcción requerida). Los archivos en Cabri II plus cuentan con botones numerados que pueden activarse haciendo “Click” sobre ellos. La numeración corresponde a la numeración presente en el documento. El lector puede desplazar a su antojo los puntos libres que pueden reconocerse porque ellos se distinguen con la siguiente marca (º). Los puntos restantes no pueden modificarse pues son el resultado de construcciones adelantadas y ajustadas a los protocolos recomendados en el esquema general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurso para la evaluación de la enseñanza y el aprendizaje de la geometría en la enseñanza secundaria desde la perspectiva de los nuevos docentes y de los que tienen más experiencia. Está diseñado para ampliar y profundizar el conocimiento de la materia y ofrecer consejos prácticos e ideas para el aula en el contexto de la práctica y la investigación actual. Hace especial hincapié en: comprender las ideas fundamentales del currículo de geometría; el aprendizaje de la geometría de manera efectiva; la investigación y la práctica actual; las ideas erróneas y los errores; el razonamiento de la geometría; la solución de problemas; el papel de la tecnología en el aprendizaje de la geometría.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicación

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recently published paper. spherical nonparametric estimators were applied to feature-track ensembles to determine a range of statistics for the atmospheric features considered. This approach obviates the types of bias normally introduced with traditional estimators. New spherical isotropic kernels with local support were introduced. Ln this paper the extension to spherical nonisotropic kernels with local support is introduced, together with a means of obtaining the shape and smoothing parameters in an objective way. The usefulness of spherical nonparametric estimators based on nonisotropic kernels is demonstrated with an application to an oceanographic feature-track ensemble.