933 resultados para Sistemas abertos (Física)
Resumo:
The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal
Resumo:
Human aging is physiological process causes alterations in several systems of the organism. In the musculoskeletal system, a main change is the decreased muscle strength, that in the lower extremity, compromises the ability to respond quickly with enough strength to prevent falls, causing alterations in postural balance. Currently, many researchers have study the human frailty, defined as a multifactorial syndrome, with excess of vulnerability to stressors, reducing ability in maintaining or regulating homeostasis. Its characteristics are directly related to physical function. Aim: To analyze muscle performance and postural balance in frail and pre-frail elderly women, and to compare them according with the frailty phenotypes criteria proposed by Fried 2001. Method: 39 frail elderly women living in the community, aged 65 years and older, were assessed muscle performance of lower extremity using isokinetic dynamometer and postural balance using Berg s balance scale and computerized baropodometry. Results: There was significant difference in plantar flexor, knee flexor and knee extensor strength, in anteroposterior (AP) oscillation with eyes open and on Berg s scores between groups. A weak correlation was observed between strength and balance. Conclusion: The results suggest that the frail elderly present worse muscle performance in lower extremity and worse postural balance compared to the pre-frail elderly. There were correlations between muscle performance and balance impairments in these elderly, but several variables are also involved in maintaining postural balance
Resumo:
We report a theoretical investigation of thermal hysteresis in magnetic nanoelements. Thermal hysteresis originates in the existence of meta-stable states in temperature intervals which may be tuned by small values of the external magnetic field, and are controlled by the systems geometric dimensions as well as the composition. Two systems have been investigated. The first system is a trilayer consisting of one antiferromagnetic MnF2 film, exchange coupled with two Fe lms. At low temperatures the ferromagnetic layers are oriented in opposite directions. By heating in the presence of an external magnetic field, the Zeeman energy induces a gradual orientation of the ferromagnets with the external field and the nucleation of spin- op-like states in the antiferromagnetic layer, leading eventually, in temperatures close to the Neel temperature, to full alignment of the ferromagnetic films and the formation of frustrated exchange bonds in the center of the antiferromagnetic layer. By cooling down to low temperatures, the system follows a different sequence of states, due to the anisotropy barriers of both materials. The width of the thermal hysteresis loop depends on the thicknesses of the FM and AFM layers as well as on the strength of the external field. The second system consists in Fe and Permalloy ferromagnetic nanoelements exchange coupled to a NiO uncompensated substrate. In this case the thermal hysteresis originates in the modifications of the intrinsic magnetic
Resumo:
In this work, the study of some complex systems is done with use of two distinct procedures. In the first part, we have studied the usage of Wavelet transform on analysis and characterization of (multi)fractal time series. We have test the reliability of Wavelet Transform Modulus Maxima method (WTMM) in respect to the multifractal formalism, trough the calculation of the singularity spectrum of time series whose fractality is well known a priori. Next, we have use the Wavelet Transform Modulus Maxima method to study the fractality of lungs crackles sounds, a biological time series. Since the crackles sounds are due to the opening of a pulmonary airway bronchi, bronchioles and alveoli which was initially closed, we can get information on the phenomenon of the airway opening cascade of the whole lung. Once this phenomenon is associated with the pulmonar tree architecture, which displays fractal geometry, the analysis and fractal characterization of this noise may provide us with important parameters for comparison between healthy lungs and those affected by disorders that affect the geometry of the tree lung, such as the obstructive and parenchymal degenerative diseases, which occurs, for example, in pulmonary emphysema. In the second part, we study a site percolation model for square lattices, where the percolating cluster grows governed by a control rule, corresponding to a method of automatic search. In this model of percolation, which have characteristics of self-organized criticality, the method does not use the automated search on Leaths algorithm. It uses the following control rule: pt+1 = pt + k(Rc − Rt), where p is the probability of percolation, k is a kinetic parameter where 0 < k < 1 and R is the fraction of percolating finite square lattices with side L, LxL. This rule provides a time series corresponding to the dynamical evolution of the system, in particular the likelihood of percolation p. We proceed an analysis of scaling of the signal obtained in this way. The model used here enables the study of the automatic search method used for site percolation in square lattices, evaluating the dynamics of their parameters when the system goes to the critical point. It shows that the scaling of , the time elapsed until the system reaches the critical point, and tcor, the time required for the system loses its correlations, are both inversely proportional to k, the kinetic parameter of the control rule. We verify yet that the system has two different time scales after: one in which the system shows noise of type 1 f , indicating to be strongly correlated. Another in which it shows white noise, indicating that the correlation is lost. For large intervals of time the dynamics of the system shows ergodicity
Resumo:
The study of the elementary excitations such as photons, phonons, plasmons, polaritons, polarons, excitons and magnons, in crystalline solids and nanostructures systems are nowdays important active field for research works in solid state physics as well as in statistical physics. With this aim in mind, this work has two distinct parts. In the first one, we investigate the propagation of excitons polaritons in nanostructured periodic and quasiperiodic multilayers, from the description of the behavior for bulk and surface modes in their individual constituents. Through analytical, as well as computational numerical calculation, we obtain the spectra for both surface and bulk exciton-polaritons modes in the superstructures. Besides, we investigate also how the quasiperiodicity modifies the band structure related to the periodic case, stressing their amazing self-similar behavior leaving to their fractal/multifractal aspects. Afterwards, we present our results related to the so-called photonic crystals, the eletromagnetic analogue of the electronic crystalline structure. We consider periodic and quasiperiodic structures, in which one of their component presents a negative refractive index. This unusual optic characteristic is obtained when the electric permissivity and the magnetic permeability µ are both negatives for the same range of angular frequency ω of the incident wave. The given curves show how the transmission of the photon waves is modified, with a striking self-similar profile. Moreover, we analyze the modification of the usual Planck´s thermal spectrum when we use a quasiperiodic fotonic superlattice as a filter.
Resumo:
Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Since the sport of football field as the main focus and it is directly related to sports phenomenon up to understood of changes occurring in the rules and game systems over the years. The main aim was analyzed the historical changes in the soccer with relation to the game systems and rules, and their consequences. The research is qualitative type and uses the bibliographic collection as instrument. For this, it was searched in the published literature data about the present study subject. The results indicated for a soccer tactics and rules set that it was constructed with the evolution and consolidation of the soccer. It was concluded that the game system had suffered many alterations during the historical process of soccer development, but this process leaved poured the spectacle of the game. In the other way, the rules had suffered great alterations with regard to the soccer primaries, but after its consolidation as universal sport, they had remained almost the same, having assisted in the maintenance of the soccer characteristics and status.
Resumo:
Nas últimas décadas tem havido uma crescente abordagem física no estudo de moléculas e sistemas macromoleculares de interesse biológico. Essa abordagem inclui tanto aspectos experimentais quanto teóricos. de fato, há um vasto campo a ser explorado pela física nessa área. Discutimos neste texto as características gerais e formação básica do profissional interessado em ter como objeto o estudo de sistemas biomoleculares, tanto em nível de graduação como na pós-graduação. Nessa linha de pensamento, assuntos como a formação básica e os fundamentos biológicos e físicos são discutidos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Apresentam-se os resultados de uma pesquisa sobre a construção de conceitos de Física Moderna e sobre a natureza da Ciência com o apoio da hipermídia, que envolveu a produção e avaliação de um software educacional. A proposta didática fundamentou-se na Teoria da Aprendizagem de Ausubel, em orientações para a implementação de sistemas hipermídia educacionais e em abordagens derivadas da pesquisa em Ensino de Ciências, dentre as quais o enfoque Ciência-Tecnologia-Sociedade, ponderações quanto à importância pedagógica da História e Filosofia da Ciência e considerações sobre a inserção de Física Moderna no Ensino Médio. O programa foi avaliado por pesquisadores de Ensino de Física e licenciandos de Física e, após a incorporação de algumas sugestões realizadas, foi testado por estudantes do terceiro ano do Ensino Médio de uma escola pública. Obtiveram-se indícios de que o uso do computador foi fator de motivação dos estudantes; a diversidade de elementos de mídia auxiliou-os a fixar a atenção sobre o conteúdo e favoreceu a visualização e interpretação dos fenômenos, facilitando ainda o raciocínio; o hipertexto estruturado em conformidade com princípios ausubelianos contribuiu para a percepção da relação entre os conceitos e ajudou no desenvolvimento de subsunçores para apoiar a aprendizagem subseqüente. Constatou-se que a proposta didática avaliada favoreceu a evolução das concepções da maior parte dos estudantes quanto ao conceito de equivalência massa-energia e suas implicações; às relações entre Ciência, Tecnologia e Sociedade, incluindo aspectos ambientais e políticos; ao papel da Ética no desenvolvimento e aplicação dos conhecimentos científicos; ao progresso da Ciência ao longo do tempo.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)