934 resultados para Single-step


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Urinary 8-hydroxydeoxyguanosine (80HdG) has been considered as an excellent marker of individuals at high risk of developing cancer. Until now, urinary 80HdG has largely been measured by high-performance liquid chromatography with electrochemical detection. A new method for the analysis of urinary 80HdG by high-performance capillary electrophoresis has been developed and optimized in our laboratory. A single step solid-phase extraction procedure was optimized and used for extracting 80HdG from human urine. Separations were performed in an uncoated silica capillary (50 cm x 50 tm i.d.) using a P/ACE MDQ system with UV detection. The separation of 80HdG from interfering urinary matrix components is optimized with regard to pH, applied voltage, pressure injection time and concentration of SDS in running buffer. The detection limit of this method is 0.4 mug/ml, the linear range is 0.8-500 mug/ml, the correlation coefficients levels is better than 0.999. The developed method is simple, fast and good reproducibility, furthermore, it requires a very small injection volumes and low costs of analysis, which makes it possible to provide a new noninvasive assay for an indirect measurement of oxidative DNA damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-(9-Carbazole)-ethyl-chloroformate (CEOC), a novel pre-column fluorescence labeling reagent, has been synthesized and applied for the derivatization of phenols. Taken phenol, p-chlorophenol, 2,5-dimethylphenol, 2,4-dichlorophenol and 1,4-dihydroxybenzene as testing standards, the effects of derivatization conditions, such as pH of borate buffer, reaction time and fluorescent tagging reagent concentration, have been systematically studied. Under the optimized conditions, CEOC reacts readily with the phenols to form stable derivatives with excitation and emission wavelengths, respectively, at 293 and 360 nm. The single step derivatization reaction could be finished within 20 min even at room temperature. Such a method has been successfully applied to the analysis of phenols in printing ink by high-performance liquid chromatography. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductor nanowires, particularly group 14 semiconductor nanowires, have been the subject of intensive research in the recent past. They have been demonstrated to provide an effective, versatile route towards the continued miniaturisation and improvement of microelectronics. This thesis aims to highlight some novel ways of fabricating and controlling various aspects of the growth of Si and Ge nanowires. Chapter 1 highlights the primary technique used for the growth of nanowires in this study, namely, supercritical fluid (SCF) growth reactions. The advantages (and disadvantages) of this technique for the growth of Si and Ge nanowires are highlighted, citing numerous examples from the past ten years. The many variables involved in this technique are discussed along with the resultant characteristics of nanowires produced (diameter, doping, orientation etc.). Chapter 2 outlines the experimental methodologies used in this thesis. The analytical techniques used for the structural characterisation of nanowires produced are also described as well as the techniques used for the chemical analysis of various surface terminations. Chapter 3 describes the controlled self-seeded growth of highly crystalline Ge nanowires, in the absence of conventional metal seed catalysts, using a variety of oligosilylgermane precursors and mixtures of germane and silane compounds. A model is presented which describes the main stages of self-seeded Ge nanowire growth (nucleation, coalescence and Ostwald ripening) from the oligosilylgermane precursors and in conjunction with TEM analysis, a mechanism of growth is proposed. Chapter 4 introduces the metal assisted etching (MAE) of Si substrates to produce Si nanowires. A single step metal-assisted etch (MAE) process, utilising metal ion-containing HF solutions in the absence of an external oxidant, was developed to generate heterostructured Si nanowires with controllable porous (isotropically etched) and non-porous (anisotropically etched) segments. In Chapter 5 the bottom-up growth of Ge nanowires, similar to that described in Chapter 3, and the top down etching of Si, described in Chapter 4, are combined. The introduction of a MAE processing step in order to “sink” the Ag seeds into the growth substrate, prior to nanowire growth, is shown to dramatically decrease the mean nanowire diameters and to narrow the diameter distributions. Finally, in Chapter 6, the biotin – streptavidin interaction was explored for the purposes of developing a novel Si junctionless nanowire transistor (JNT) sensor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this thesis was to improve the dissolution rate of the poorly waters-soluble drug, fenofibrate by processing it with a high surface area carrier, mesoporous silica. The subsequent properties of the drug – silica composite were studied in terms of drug distribution within the silica matrix, solid state and release properties. Prior to commencing any experimental work, the properties of unprocessed mesoporous silica and fenofibrate were characterised (chapter 3), this allowed for comparison with the processed samples studied in later chapters. Fenofibrate was a highly stable, crystalline drug that did not adsorb moisture, even under long term accelerated storage conditions. It maintained its crystallinity even after SC-CO2 processing. Its dissolution rate was limited and dependent on the characteristics of the particular in vitro media studied. Mesoporous silica had a large surface area and mesopore volume and readily picked up moisture when stored under long term accelerated storage conditions (75% RH, 40 oC). It maintained its mesopore character after SC-CO2 processing. A variety of methods were employed to process fenofibrate with mesoporous silica including physical mixing, melt method, solvent impregnation and novel methods such as liquid and supercritical carbon dioxide (SC-CO2) (chapter 4). It was found that it was important to break down the fenofibrate particulate structure to a molecular state to enable drug molecules enter into the silica mesopores. While all processing methods led to some increase in fenofibrate release properties; the impregnation, liquid and SC-CO2 methods produced the most rapid release rates. SC-CO2 processing was further studied with a view to optimising the processing parameters to achieve the highest drug-loading efficiency possible (chapter 5). In this thesis, it was that SC-CO2 processing pressure had a bearing on drug-loading efficiency. Neither pressure, duration or depressurisation rate affected drug solid state or release properties. The amount of drug that could be loaded onto to the mesoporous silica successfully was also investigated at different ratios of drug mass to silica surface area under constant SC-CO2 conditions; as the drug – silica ratio increased, the drug-loading efficiency decreased, while there was no effect on drug solid state or release properties. The influence of the number of drug-loading steps was investigated (chapter 6) with a view to increasing the drug-loading efficiency. This multiple step approach did not yield an increase in drug-loading efficiency compared to the single step approach. It was also an objective in this chapter to understand how much drug could be loaded into silica mesopores; a method based on the known volume of the mesopores and true density of drug was investigated. However, this approach led to serious repercussions in terms of the subsequent solid state nature of the drug and its release performance; there was significant drug crystallinity and reduced release extent. The impact of in vitro release media on fenofibrate release was also studied (chapter 6). Here it was seen that media containing HCl led to reduced drug release over time compared to equivalent media not containing HCl. The key findings of this thesis are discussed in chapter 7 and included: 1. Drug – silica processing method strongly influenced drug distribution within the silica matrix, drug solid state and release. 2. The silica surface area and mesopore volume also influenced how much drug could be loaded. It was shown that SC-CO2 processing variables such as processing pressure (13.79 – 41.37 MPa), duration time (4 – 24 h) and depressurisation rate (rapid or controlled) did not influence the drug distribution within the SBA- 15 matrix, drug solid state form or release. Possible avenues of research to be considered going forward include the development and application of high resolution imaging techniques to visualise drug molecules within the silica mesopores. Also, the issues surrounding SBA-15 usage in a pharmaceutical manufacturing environment should be addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colloidal photonic crystals have potential light manipulation applications including; fabrication of efficient lasers and LEDs, improved optical sensors and interconnects, and improving photovoltaic efficiencies. One road-block of colloidal selfassembly is their inherent defects; however, they can be manufactured cost effectively into large area films compared to micro-fabrication methods. This thesis investigates production of ‘large-area’ colloidal photonic crystals by sonication, under oil co-crystallization and controlled evaporation, with a view to reducing cracking and other defects. A simple monotonic Stöber particle synthesis method was developed producing silica particles in the range of 80 to 600nm in a single step. An analytical method assesses the quality of surface particle ordering in a semiquantitative manner was developed. Using fast Fourier transform (FFT) spot intensities, a grey scale symmetry area method, has been used to quantify the FFT profiles. Adding ultrasonic vibrations during film formation demonstrated large areas could be assembled rapidly, however film ordering suffered as a result. Under oil cocrystallisation results in the particles being bound together during film formation. While having potential to form large areas, it requires further refinement to be established as a production technique. Achieving high quality photonic crystals bonded with low concentrations (<5%) of polymeric adhesives while maintaining refractive index contrast, proved difficult and degraded the film’s uniformity. A controlled evaporation method, using a mixed solvent suspension, represents the most promising method to produce high quality films over large areas, 75mm x 25mm. During this mixed solvent approach, the film is kept in the wet state longer, thus reducing cracks developing during the drying stage. These films are crack-free up to a critical thickness, and show very large domains, which are visible in low magnification SEM images as Moiré fringe patterns. Higher magnification reveals separation between alternate fringe patterns are domain boundaries between individual crystalline growth fronts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D metallodielectric photonic crystal (MDPC) structures. The fabrication of MDPCs with Au nanoparticles attached to the PMMA spheres core–shell particles is described. Various alternative procedures for the fabrication of photonic crystals and MDPCs are described and preliminary results on the use of an Au-based MDPC for surface-enhanced Raman scattering (SERS) are presented. These preliminary results suggest a threefold increase of the Raman signal with the MDPC as compared to PMMA photonic crystals. The fabrication of PMMA-gold and PMMA-nickel MDPC structures via an optimised electrodeposition process is described. This process results in the formation of a continuous dielectric-metal interface throughout a 3D inverted photonic crystal structure, which are shown to possess interesting optical properties. The fabrication of a robust 3D silica inverted structure with embedded Au nanoparticles is described by a novel co-crystallisation method which is capable of creating a SiO2/Au NP composite structure in a single step process. Although this work focuses on the creation of photonic crystals, this co-crystallisation approach has potential for the creation of other functional materials. A method for the fabrication of inverted opals containing silicon nanoparticles using aerosol assisted chemical vapour deposition is described. Silicon is a high dielectric material and nanoparticles of silicon can improve the band gap and absorption properties of the resulting structure, and therefore have the potential to be exploited in photovoltaics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Treatment of Zn(Si(SiMe3)3)2 with ZnX2 (X = Cl, Br, I) in tetrahydrofuran (THF) at 23 °C afforded [Zn(Si(SiMe3)3)X(THF)]2 in 83–99% yield. X-ray crystal structures revealed dimeric structures with Zn2X2 cores. Thermogravimetric analyses of [Zn(Si(SiMe3)3)X(THF)]2 demonstrated a loss of coordinated THF between 50 and 155 °C and then single-step weight losses between 200 and 275 °C. The nonvolatile residue was zinc metal in all cases. Bulk thermolyses of [Zn(Si(SiMe3)3)X(THF)]2 between 210 and 250 °C afforded zinc metal in 97–99% yield, Si(SiMe3)3X in 91–94% yield, and THF in 81–98% yield. Density functional theory calculations confirmed that zinc formation becomes energetically favorable upon THF loss. Similar reactions are likely to be general for M(SiR3)n/MXn pairs and may lead to new metal-film-growth processes for chemical vapor deposition and atomic layer deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate that interferometric lithography provides a fast, simple approach to the production of patterns in self-assembled monolayers (SAMs) with high resolution over square centimeter areas. As a proof of principle, two-beam interference patterns, formed using light from a frequency-doubled argon ion laser (244 nm), were used to pattern methyl-terminated SAMs on gold, facilitating the introduction of hydroxyl-terminated adsorbates and yielding patterns of surface free energy with a pitch of ca. 200 nm. The photopatterning of SAMs on Pd has been demonstrated for the first time, with interferometric exposure yielding patterns of surface free energy with similar features sizes to those obtained on gold. Gold nanostructures were formed by exposing SAMs to UV interference patterns and then immersing the samples in an ethanolic solution of mercaptoethylamine, which etched the metal substrate in exposed areas while unoxidized thiols acted as a resist and protected the metal from dissolution. Macroscopically extended gold nanowires were fabricated using single exposures and arrays of 66 nm gold dots at 180 nm centers were formed using orthogonal exposures in a fast, simple process. Exposure of oligo(ethylene glycol)-terminated SAMs to UV light caused photodegradation of the protein-resistant tail groups in a substrate-independent process. In contrast to many protein patterning methods, which utilize multiple steps to control surface binding, this single step process introduced aldehyde functional groups to the SAM surface at exposures as low as 0.3 J cm(-2), significantly less than the exposure required for oxidation of the thiol headgroup. Although interferometric methods rely upon a continuous gradient of exposure, it was possible to fabricate well-defined protein nanostructures by the introduction of aldehyde groups and removal of protein resistance in nanoscopic regions. Macroscopically extended, nanostructured assemblies of streptavidin were formed. Retention of functionality in the patterned materials was demonstrated by binding of biotinylated proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This communication describes a single-step electrospraying technique that generates core-shell microspheres (CSMs) with encapsulated protein as the core and an amphiphilic biodegradable polymer as the shell. The protein release profiles of the electrosprayed CSMs showed steady release kinetics over 3 weeks without a significant initial burst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Negative-strand RNA viruses encode a single RNA-dependent RNA polymerase (RdRp) which transcribes and replicates the genome. The open reading frame encoding the RdRp from a virulent wild-type strain of rinderpest virus (RPV) was inserted into an expression plasmid. Sequences encoding enhanced green fluorescent protein (EGFP) were inserted into a variable hinge of the RdRp. The resulting polymerase was autofluorescent, and its activity in the replication/transcription of a synthetic minigenome was reduced. We investigated the potential of using this approach to rationally attenuate a virus by inserting the DNA sequences encoding the modified RdRp into a full-length anti-genome plasmid from which a virulent virus (rRPV(KO)) can be rescued. A recombinant virus, rRPV(KO)L-RRegfpR, which grew at an indistinguishable rate and to an identical titer as rRPV(KO) in vitro, was rescued. Fluorescently tagged polymerase was visible in large cytoplasmic inclusions and beneath the cell membrane. Subcutaneous injection of 10(4) TCID(50) of the rRPV(KO) parental recombinant virus into cattle leads to severe disease symptoms (leukopenia/diarrhea and pyrexia) and death by 9 days postinfection. Animals infected with rRPV(KO)L-RRegfpR exhibited transient leukopenia and mild pyrexia, and the only noticeable clinical signs were moderate reddening of one eye and a slight ocular-nasal discharge. Viruses that expressed the modified polymerase were isolated from peripheral blood lymphocytes and eye swabs. This demonstrates that a virulent morbillivirus can be attenuated in a single step solely by modulating RdRp activity and that there is not necessarily a correlation between virus growth in vitro and in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study is to develop a decision making system to evaluate the risks in E-Commerce (EC) projects. Competitive software businesses have the critical task of assessing the risk in the software system development life cycle. This can be conducted on the basis of conventional probabilities, but limited appropriate information is available and so a complete set of probabilities is not available. In such problems, where the analysis is highly subjective and related to vague, incomplete, uncertain or inexact information, the Dempster-Shafer (DS) theory of evidence offers a potential advantage. We use a direct way of reasoning in a single step (i.e., extended DS theory) to develop a decision making system to evaluate the risk in EC projects. This consists of five stages 1) establishing knowledge base and setting rule strengths, 2) collecting evidence and data, 3) determining evidence and rule strength to a mass distribution for each rule; i.e., the first half of a single step reasoning process, 4) combining prior mass and different rules; i.e., the second half of the single step reasoning process, 5) finally, evaluating the belief interval for the best support decision of EC project. We test the system by using potential risk factors associated with EC development and the results indicate that the system is promising way of assisting an EC project manager in identifying potential risk factors and the corresponding project risks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efficient control of the illegal use of anabolic steroids must both take into account metabolic patterns and associated kinetics of elimination; in this context, an extensive animal experiment involving 24 calves and consisting of three administrations of 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate esters was carried out over 50 days. Urine samples were regularly collected during the experiment from all treated and non-treated calves. For sample preparation, a single step high throughput protocol based on 96-well C-18 SPE was developed and validated according to the European Decision 2002/657/EC requirements. Decision limits (CC alpha) for steroids were below 0.1 mu g L-1, except for 19-norandrosterone (CC alpha = 0.7 mu g L-1) and estrone (CC alpha = 0.3 mu g L-1). Kinetics of elimination of the administered 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate were established by monitoring 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 beta-nandrolone, 17 alpha-nandrolone, 19-noretiocholanolone, 19-norandrostenedione, respectively. All animals demonstrated homogeneous patterns of elimination both from a qualitative (metabolite profile) and quantitative point of view (elimination kinetics in urine). Most abundant metabolites were 17 alpha-estradiol and 17 alpha-nandrolone (> 20 and 2 mg L-1, respectively after 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate administration) whereas 17 beta-estradiol, estrone, 17 beta-nandrolone, 19-noretiocholanolone and 19-norandrostenedione were found as secondary metabolites at concentration values up to the mu g L-1 level. No significant difference was observed between male and female animals. The effect of several consecutive injections on elimination profiles was studied and revealed a tendency toward a decrease in the biotransformation of administered steroid 17 beta form. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an urgent need to replace the injection currently used for low molecular weight heparin (LMWH) multidose therapy with a non- or minimally invasive delivery approach. In this study, laser-engineered dissolving microneedle (DMN) arrays fabricated from aqueous blends of 15% w/w poly(methylvinylether-co-maleic anhydride) were used for the first time in active transdermal delivery of the LMWH nadroparin calcium (NC). Importantly, an array loading of 630 IU of NC was achieved without compromising the array mechanical strength or drug bioactivity. Application of NC-DMNs to dermatomed human skin (DHS) using the single-step 'poke and release' approach allowed permeation of approximately 10.6% of the total NC load over a 48-h study period. The cumulative amount of NC that permeated DHS at 24 h and 48 h attained 12.28 ± 4.23 IU/cm and 164.84 ± 8.47 IU/cm , respectively. Skin permeation of NC could be modulated by controlling the DMN array variables, such as MN length and array density as well as application force to meet various clinical requirements including adjustment for body mass and renal function. NC-loaded DMN offers great potential as a relatively low-cost functional delivery system for enhanced transdermal delivery of LMWH and other macromolecules. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a small planetary ball mill, liquid-assisted grinding (LAG) of metal salts or oxides (ZnO, CdO, CdCO3, Cu(OAc)(2)center dot H2O, Co(OAc)(2)center dot 4H(2)O, Mn(OAc)(2)center dot 4H(2)O, Ni(OAc)(2)center dot 4H(2)O, FeSO4 center dot 7H(2)O) with two equivalents of isonicotinic acid (HINA) and small amounts of water ( up to 5.6 molar equivalents) gave discrete aquo complexes trans-[M(INA)(2)(OH2)(4)] (M = Zn, Cd, Cu, Fe, Co, Ni, Mn) efficiently within 30 min. For M = Zn, Cd and Cu these complexes readily undergo reversible formal dehydration to the extended network structures [M(INA)(2)] (M = Zn, Cu) or [Cd(INA)(2)(OH2)]center dot DMF by further LAG with non-aqueous liquids such as methanol or DMF. Overall, the mechanochemical dehydrations are more effective than heating or immersion in bulk solvents. The work demonstrates a two-step mechanochemical synthesis of coordination networks via discrete aquo complexes which may be preferable to single step reactions or grinding-annealing procedures in some cases. For example, the two step method was the only way to prepare [Cd(INA)(2)(OH2)]center dot DMF mechanochemically and the porous network Cu(INA)(2) could not be obtained from the aquo complex by heating.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A single-step lateral flow immunoassay (LFIA) was developed and validated for the rapid screening of paralytic shellfish toxins (PSTs) from a variety of shellfish species, at concentrations relevant to regulatory limits of 800 μg STX-diHCl equivalents/kg shellfish meat. A simple aqueous extraction protocol was performed within several minutes from sample homogenate. The qualitative result was generated after a 5 min run time using a portable reader which removed subjectivity from data interpretation. The test was designed to generate noncompliant results with samples containing approximately 800 μg of STX-diHCl/kg. The cross-reactivities in relation to STX, expressed as mean ± SD, were as follows: NEO: 128.9% ± 29%; GTX1&4: 5.7% ± 1.5%; GTX2&3: 23.4% ± 10.4%; dcSTX: 55.6% ± 10.9%; dcNEO: 28.0% ± 8.9%; dcGTX2&3: 8.3% ± 2.7%; C1&C2: 3.1% ± 1.2%; GTX5: 23.3% ± 14.4% (n = 5 LFIA lots). There were no indications of matrix effects from the different samples evaluated (mussels, scallops, oysters, clams, cockles) nor interference from other shellfish toxins (domoic acid, okadaic acid group). Naturally contaminated sample evaluations showed no false negative results were generated from a variety of different samples and profiles (n = 23), in comparison to reference methods (MBA method 959.08, LC-FD method 2005.06). External laboratory evaluations of naturally contaminated samples (n = 39) indicated good correlation with reference methods (MBA, LC-FD). This is the first LFIA which has been shown, through rigorous validation, to have the ability to detect most major PSTs in a reliable manner and will be a huge benefit to both industry and regulators, who need to perform rapid and reliable testing to ensure shellfish are safe to eat.