881 resultados para Silicon nitride ceramics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of increasing the amount of added grain refiner on grain size and morphology has been investigated for a range of hypoeutectic Al-Si alloys. The results show a transition in grain size at a silicon concentration of about 3 wt% in unrefined alloys; the grain size decreasing with silicon content before the transition, and increasing beyond the transition point. A change in morphology also occurs with increased silicon content. The addition of grain refiner leads to greater refinement for silicon contents below the transition point than for those contents above the transition point, while the transition point seems to remain unchanged. The slope of the grain size versus silicon content curve after the transition seems to be unaffected by the degree of grain refinement. The results are related to the competitive processes of nucleation and constitutional effects during growth and their impact on nucleation kinetics. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase and microstructural evolution of multi-cation Sm-Ca-alpha-sialon ceramics was investigated. Six samples were prepared, ranging from a pure Sm-sialon to a pure Ca-sialon, with calcium replacing samarium in 20 eq% increments, thus maintaining an equivalent design composition in all samples. After pressureless sintering at 1820 degreesC for 2 It, all samples were subsequently heat treated up to 192 h at 1450 and 1300 degreesC. The amount of grain boundary glass in the samples after sintering was observed to decrease with increasing calcium levels. A M-ss' or M-ss',-gehlenite solid solution was observed to form during the 1450 degreesC heat treatment of all Sm-containing samples, and this phase forms in clusters in the high-Sm samples. The thermal stability of the alpha-sialon phase was improved in the multi-cation systems. Heat treatment at 1300 degreesC produces SmAlO3 in the high-Sm samples, a M-ss',-gehlenite solid solution in the high-Ca samples, and a Sm-Ca-apatite phase in some intermediate samples. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of alpha-sialon (alpha') compositions containing mixed stabilising cations were prepared, by introducing additional CaO to a basic Sm alpha-sialon compositions. The thermal stability of these Sm-Ca-containing alpha-sialon phases was investigated using XRD, SEM and EDXS techniques. It was found that the addition of calcium into the Sm alpha-sialon systems greatly improved the stability of the alpha-sialon phases. Calcium was found to be incorporated into the alpha-sialon structure, coexistent with the samarium, and partitioning of the calcium and samarium was observed between the alpha' phase and grain boundary phases. This indicates a technique which may be used to improve the thermal stability of the alpha' phase while maintaining good refractory phases at the gialon grain boundaries. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining was carried out to investigate microfracture, residual damage, and surface roughness associated with material removal and surface generation. Brittle versus plastic deformation was studied using Vickers indention and nano-indentation. To characterize the abrasive machining response, the 6H-SiC (0001) substrates were ground using diamond wheels with grit sizes of 25, 15 and 7 mum, and then polished with diamond suspensions of 3 and 0.05 mum. It is found that in indentation, there was a scale effect for brittle versus plastic deformation in 6H-SiC substrates. Also, in grinding, the scales of fracture and surface roughness of the substrates decreased with a decrease in diamond grit size. However, in polishing, a reduction in grit size of diamond suspensions gave no significant improvement in surface roughness. Furthermore, the results showed that fracture-free 6H-SiC (0001) surfaces were generated in polishing with the existence of the residual crystal defects, which were associated with the origin of defects in single crystal growth. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple equations are proposed for determining elastic modulus and hardness properties of thin films on substrates from nanoindentation experiments. An empirical formulation relates the modulus E and hardness H of the film/substrate bilayer to corresponding material properties of the constituent materials via a power-law relation. Geometrical dependence of E and H is wholly contained in the power-law exponents, expressed here as sigmoidal functions of indenter penetration relative to film thickness. The formulation may be inverted to enable deconvolution of film properties from data on the film/substrate bilayers. Berkovich nanoindentation data for dense oxide and nitride films on silicon substrates are used to validate the equations and to demonstrate the film property deconvolution. Additional data for less dense nitride films are used to illustrate the extent to which film properties may depend on the method of fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of aluminum-10 wt pet silicon castings were produced in sand molds to investigate the effect of modification on porosity formation. Modification with individual additions of either strontium or sodium resulted in a statistically significant increase in the level of porosity compared to unmodified castings. The increase in porosity with modification is due to the presence of numerous dispersed pores, which were absent in the unmodified casting. It is proposed that these pores form as a result of differences in size of the aluminum-silicon eutectic grains between unmodified and modified alloys. A geometric model is developed to show how the size of eutectic grains can influence the amount and distribution of porosity. Unlike traditional feeding-based models, which incorporate the effect: of microstructure on permeability, this model considers what happens when liquid is isolated from the riser and can no longer flow. This simple isolation model complements rather than contradicts existing theories on modification-related porosity formation and should be considered in the development of future comprehensive models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured drug delivery systems (NDDS), such as liposomes, represent a growing area in biomedical research. These microheterogeneous media can be used in many biological systems to provide appropriate drug levels with a specific biodistribution. The photophysical properties of a silicon derivative of tribenzonaphthoporphyrazinato (Si-tri-PcNc) incorporated into liposome were studied by steady-state techniques, time-resolved fluorescence and laser flash photolysis. All the spectroscopy measurements performed allowed us to conclude that Si-tri-PcNc in liposome is a promising NDDS for PDT The in vitro experiments with liposomal NDDS showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 1 mu M of photosensitizer concentration and 10.0 J/cm(2) of light. These conditions are sufficient to kill about 80% of the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report the synthesis, characterization and catalytic properties of a vanadium oxide-silicon oxide composite xerogel prepared by a soft chemistry approach. In order to obtain such material, we submitted a vanadium pentoxide gel previously synthesized via protonation of metavanadate species to an ""in situ"" progressive polycondensation into silica gel. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Further, the catalytic activity of this material was evaluated for the epoxidation of styrene and cyclooctene using iodosylbenzene, hydrogen peroxide and m-chloroperbenzoic acid as the oxidizing agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leather industries which promote hide stabilization by the conventional chrome-tanning process are a major source of pollution because of the resultant chromium-rich wastes. In this work, an extensive characterization of such a chromium-rich waste sludge is presented, regarding its chemical composition (XRF), crystalline phase contents (XRD), organic carbon content (TOC), thermal behavior by thermogravimetry (TG) and differential scanning calorimetry (DSC), as well as its stability under chemical attack (the concentration of important ions in the leachates being determined by capillary electrophoresis) and when submitted to temperatures as high as 1100 degrees C, in air. The material showed the tendency to produce some undesirable, and previously non-detected hexavalent chromium when exposed to high temperatures, but after washing off the soluble salts and the elimination of the organic matter by firing, the resultant material was succesfully tested as a ceramic pigment in a conventional glaze composition usually employed in the ceramic the industry. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to compare fracture toughness (K(Ic)), stress corrosion susceptibility coefficient (n), and stress intensity factor threshold for crack propagation (K(I0)) of two porcelains [VM7/Vita (V) and d.Sign/Ivoclar (D)], two glass-ceramics [Empress/Ivolcar (E1) and Empress2/Ivlocar (E2)] and a glass-infiltrated alumina composite [In-Ceram Alumina/Vita (IC)]. Disks were constructed according to each manufacturer`s processing method, and polished before induction of cracks by a Vickers indenter. Crack lengths were measured under optical microscopy at times between 0.1 and 100 h. Specimens were stored in artificial saliva at 37A degrees C during the whole experiment. K(Ic) and n were determined using indentation fracture method. K(I0) was determined by plotting log crack velocity versus log K(I). Microstructure characterization was carried out under SEM, EDS, X-ray diffraction and X-ray fluorescence. IC and E2 presented higher K(Ic) and K(I0) compared to E1, V, and D. IC presented the highest n value, followed by E2, D, E1, and V in a decreasing order. V and D presented similar K(Ic), but porcelain V showed higher K(I0) and lower n compared to D. Microstructure features (volume fraction, size, aspect ratio of crystalline phases and chemical composition of glassy matrix) determined K(Ic). The increase of K(Ic) value favored the increases of n and K(I0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). Methods. Bar-shaped specimens were fabricated according to the manufacturer`s instructions. Specimens were tested in three-point flexure in 37 degrees C artificial saliva. Weibull analysis (n = 30) and a constant stress-rate test (n = 10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyzes were performed using SEM. ANOVA and Tukey`s test (alpha = 0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyzes. Results. YZ and AL presented high crystalline content and low porosity (0.1-0.2%). YZ had the highest characteristic strength (sigma(0)) value (911 MPa) followed by AL (488 MPa) and IZ (423 MPa). Lower sigma(0) values were observed for the porcelains (68-75 MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36-44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34-48 mu m) and among the porcelains (75-86 mu m). Significance. The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-periodic structural variation has been found in the high T-c cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu3O8+delta, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high T-c cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high T-c cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.