920 resultados para Self-assembled monolayers
Resumo:
In der vorliegenden Arbeit wurde der Einfluss von monomeren und polymeren ionischen Additiven auf die Kristallisation von Calciumcarbonat untersucht. Dabei wurden die Wirkungen der Additive auf die Morphologie und auf die Phasenzusammensetzung (relative Verhältnisse der Calciumcarbonat-Polymorphe Calcit, Aragonit und Vaterit) sowohl experimentell als auch theoretisch im Sinne von Molecular Modelling studiert.rnrnMit Hilfe der monomeren Additive, wie z.B. Monocarbonsäuren, konnten grundlegende Mechanismen bei der Interaktion von Additiven mit dem wachsenden Kristall aufgeklärt werden. Auch der Einfluss der Stereochemie auf die Phasenselektion des Calciumcarbonats konnte detailliert untersucht werden. Die polymeren ionischen Additive vertiefen die Untersuchungen zu den bei den monomeren Additiven gefundenen Mechanismen. Auch hier konnte der Einfluss der Stereochemie studiert werden.rnrnAußerdem konnten verschiedene kooperative Wechselwirkungen der Polymere mit dem Kristall bzw. der zugrunde liegenden Oberfläche (im Sinne von self assembled-monolayers, SAM) gefunden und erklärt werden.
Resumo:
Graphene nanoribbons (GNRs), which are defined as nanometer-wide strips of graphene, are attracting an increasing attention as one on the most promising materials for future nanoelectronics. Unlike zero-bandgap graphene that cannot be switched off in transistors, GNRs possess open bandgaps that critically depend on their width and edge structures. GNRs were predominantly prepared through “top-down” methods such as “cutting” of graphene and “unzipping” of carbon nanotubes, but these methods cannot precisely control the structure of the resulting GNRs. In contrast, “bottom-up” chemical synthetic approach enables fabrication of structurally defined and uniform GNRs from tailor-made polyphenylene precursors. Nevertheless, width and length of the GNRs obtainable by this method were considerably limited. In this study, lateral as well as longitudinal extensions of the GNRs were achieved while preserving the high structural definition, based on the bottom-up solution synthesis. Initially, wider (~2 nm) GNRs were synthesized by using laterally expanded monomers through AA-type Yamamoto polymerization, which proved more efficient than the conventional A2B2-type Suzuki polymerization. The wider GNRs showed broad absorption profile extending to the near-infrared region with a low optical bandgap of 1.12 eV, which indicated a potential of such GNRs for the application in photovoltaic cells. Next, high longitudinal extension of narrow (~1 nm) GNRs over 600 nm was accomplished based on AB-type Diels–Alder polymerization, which provided corresponding polyphenylene precursors with the weight-average molecular weight of larger than 600,000 g/mol. Bulky alkyl chains densely installed on the peripheral positions of these GNRs enhanced their liquid-phase processability, which allowed their formation of highly ordered self-assembled monolayers. Furthermore, non-contact time-resolved terahertz spectroscopy measurements demonstrated high charge-carrier mobility within individual GNRs. Remarkably, lateral extension of the AB-type monomer enabled the fabrication of wider (~2 nm) and long (>100 nm) GNRs through the Diels–Alder polymerization. Such longitudinally extended and structurally well-defined GNRs are expected to allow the fabrication of single-ribbon transistors for the fundamental studies on the electronic properties of the GNRs as well as contribute to the development of future electronic devices.
Resumo:
Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter--gold nanoparticles protected by a monolayer of a chiral thiol--are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.
Resumo:
Molecules are the smallest possible elements for electronic devices, with active elements for such devices typically a few Angstroms in footprint area. Owing to the possibility of producing ultrahigh density devices, tremendous effort has been invested in producing electronic junctions by using various types of molecules. The major issues for molecular electronics include (1) developing an effective scheme to connect molecules with the present micro- and nano-technology, (2) increasing the lifetime and stabilities of the devices, and (3) increasing their performance in comparison to the state-of-the-art devices. In this work, we attempt to use carbon nanotubes (CNTs) as the interconnecting nanoelectrodes between molecules and microelectrodes. The ultimate goal is to use two individual CNTs to sandwich molecules in a cross-bar configuration while having these CNTs connected with microelectrodes such that the junction displays the electronic character of the molecule chosen. We have successfully developed an effective scheme to connect molecules with CNTs, which is scalable to arrays of molecular electronic devices. To realize this far reaching goal, the following technical topics have been investigated. 1. Synthesis of multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition (T-CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques (Chapter 3). We have evaluated the potential use of tubular and bamboo-like MWCNTs grown by T-CVD and PE-CVD in terms of their structural properties. 2. Horizontal dispersion of MWCNTs with and without surfactants, and the integration of MWCNTs to microelectrodes using deposition by dielectrophoresis (DEP) (Chapter 4). We have systematically studied the use of surfactant molecules to disperse and horizontally align MWCNTs on substrates. In addition, DEP is shown to produce impurityfree placement of MWCNTs, forming connections between microelectrodes. We demonstrate the deposition density is tunable by both AC field strength and AC field frequency. 3. Etching of MWCNTs for the impurity-free nanoelectrodes (Chapter 5). We show that the residual Ni catalyst on MWCNTs can be removed by acid etching; the tip removal and collapsing of tubes into pyramids enhances the stability of field emission from the tube arrays. The acid-etching process can be used to functionalize the MWCNTs, which was used to make our initial CNT-nanoelectrode glucose sensors. Finally, lessons learned trying to perform spectroscopic analysis of the functionalized MWCNTs were vital for designing our final devices. 4. Molecular junction design and electrochemical synthesis of biphenyl molecules on carbon microelectrodes for all-carbon molecular devices (Chapter 6). Utilizing the experience gained on the work done so far, our final device design is described. We demonstrate the capability of preparing patterned glassy carbon films to serve as the bottom electrode in the new geometry. However, the molecular switching behavior of biphenyl was not observed by scanning tunneling microscopy (STM), mercury drop or fabricated glassy carbon/biphenyl/MWCNT junctions. Either the density of these molecules is not optimum for effective integration of devices using MWCNTs as the nanoelectrodes, or an electroactive contaminant was reduced instead of the ionic biphenyl species. 5. Self-assembly of octadecanethiol (ODT) molecules on gold microelectrodes for functional molecular devices (Chapter 7). We have realized an effective scheme to produce Au/ODT/MWCNT junctions by spanning MWCNTs across ODT-functionalized microelectrodes. A percentage of the resulting junctions retain the expected character of an ODT monolayer. While the process is not yet optimized, our successful junctions show that molecular electronic devices can be fabricated using simple processes such as photolithography, self-assembled monolayers and dielectrophoresis.
Resumo:
The rate constants of simple electron transfer (ET) reactions in room temperature ionic liquids (ILs) available now are rather high, typically at the edge of experimental accuracy. To consider ET phenomena in these media in view of theory developed earlier for molecular solvents, it is crucial to provide quantitative comparison of experimental kinetic data for certain reactions. We report this comparison for ferrocene/ferrocenium reaction. The ET distance is fixed by Au surface modification by alkanethiol self-assembled monolayers, which were characterized by in situ scanning tunneling microscopy. The dependence of ln kapp on barrier thickness in the range of ca. 6–20 Å is linear, with a slope typical for the same plots in aqueous media. This result confirms diabatic mode of Fc oxidation at long distance. The data for shorter ET distances point to the adiabatic regime of ET at a bare gold surface, although more detailed computational studies are required to justify this conclusion.
Resumo:
This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption
Resumo:
Mechanisms of bacterial pathogenesis have become an increasingly important subject as pathogens have become increasingly resistant to current antibiotics. The adhesion of microorganisms to the surface of host tissue is often a first step in pathogenesis and is a plausible target for new antiinfective agents. Examination of bacterial adhesion has been difficult both because it is polyvalent and because bacterial adhesins often recognize more than one type of cell-surface molecule. This paper describes an experimental procedure that measures the forces of adhesion resulting from the interaction of uropathogenic Escherichia coli to molecularly well defined models of cellular surfaces. This procedure uses self-assembled monolayers (SAMs) to model the surface of epithelial cells and optical tweezers to manipulate the bacteria. Optical tweezers orient the bacteria relative to the surface and, thus, limit the number of points of attachment (that is, the valency of attachment). Using this combination, it was possible to quantify the force required to break a single interaction between pilus and mannose groups linked to the SAM. These results demonstrate the deconvolution and characterization of complicated events in microbial adhesion in terms of specific molecular interactions. They also suggest that the combination of optical tweezers and appropriately functionalized SAMs is a uniquely synergistic system with which to study polyvalent adhesion of bacteria to biologically relevant surfaces and with which to screen for inhibitors of this adhesion.
Resumo:
Eletrodos de ouro foram utilizados para preparação de eletrodos modificados com monocamadas auto arranjadas de tióis. A limpeza do substrato metálico é fundamental para que a arquitetura molecular superficial possa ser efetuada com boa estabilidade e reprodutibilidade, além de fornecer dados utilizados no cálculo de área ativa, necessários na normalização dos valores de recobrimento superficial obtidos nas determinações de dessorção do agente modificador interno, o ácido 3-mercaptopropiônico. Os eletrodos modificados consistiram no recobrimento de transdutores de ouro com ácido 3-mercaptopropiônico através da imersão do eletrodo de Au em solução 25 mmolL-1 deste composto e, em seguida, com moléculas de cisteína, através da imersão do eletrodo de Au/3-MPA em solução 0,1 molL-1 deste composto, originando um sensor do tipo Au/3-MPA/CSH. As moléculas de cisteína foram utilizadas como agente redutor para obtenção de nanopartículas de Au na superfície do eletrodo modificado, através da aplicação de 20 µL de solução de HAuCl4. Após a confirmação da ausência do par tiólico superficial responsável pela redução das nanopartículas, o eletrodo Au/3-MPA/CSH/AuNp foi utilizado na determinação de peróxido de hidrogênio em soluções de concentrações crescentes em tampão fosfato 0,1 molL-1 pH 7,2.
Resumo:
We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.
Resumo:
Surface-enhanced raman scattering (SERS) spectra of self-assembled monolayers of 4-aminobenzenethiol (4-ABT) on copper (Cu) and silver (Ag) surfaces decorated with Cu and Ag nanostructures, respectively, have been obtained with lasers at 532, 632.8, 785, and 1064 nm. Density functional theory (DFT) has been used to obtain calculated vibrational frequencies of the 4-ABT and 4,4′-dimercaptoazobenzene (4,4′-DMAB) molecules adsorbed on model Cu surfaces. The features of the SERS spectra depend on the electrode potential and the type and power density of the laser. SERS spectra showed the formation of the 4,4′-DMAB on the nanostructured Cu surface independently of the laser employed. For the sake of comparison SERS spectra of a self-assembled monolayer of the 4-ABT on Ag surfaces decorated with Ag nanostructures have been also obtained with the same four lasers. When using the 532 and 632.8 nm lasers, the 4,4′-DMAB is formed on Cu surface at electrode potentials as low as −1.0 V (AgCl/Ag) showing a different behavior with respect to Ag (and others metals such as Au and Pt). On the other hand, the surface-enhanced infrared reflection absorption (SEIRA) spectra showed that in the absence of the laser excitation the 4,4′-DMAB is not produced from the adsorbed 4-ABT on nanostructured Cu in the whole range of potentials studied. These results point out the prevalence of the role of electron–hole pairs through surface plasmon activity to explain the obtained SERS spectra.
Resumo:
A broad review of technologically focused work concerning biomolecules at interfaces is presented. The emphasis is on developments in interfacial biomolecular engineering that may have a practical impact in bioanalysis, tissue engineering, emulsion processing or bioseparations. We also review methods for fabrication in an attempt to draw out those approaches that may be useful for product manufacture, and briefly review methods for analysing the resulting interfacial nanostructures. From this review we conclude that the generation of knowledge and-innovation at the nanoscale far exceeds our ability to translate this innovation into practical outcomes addressing a market need, and that significant technological challenges exist. A particular challenge in this translation is to understand how the structural properties of biomolecules control the assembled architecture, which in turn defines product performance, and how this relationship is affected by the chosen manufacturing route. This structure-architecture-process-performance (SAPP) interaction problem is the familiar laboratory scale-up challenge in disguise. A further challenge will be to interpret biomolecular self- and directed-assembly reactions using tools of chemical reaction engineering, enabling rigorous manufacturing optimization of self-assembly laboratory techniques. We conclude that many of the technological problems facing this field are addressable using tools of modem chemical and biomolecular engineering, in conjunction with knowledge and skills from the underpinning sciences. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.
Resumo:
An examination of the selective etching mechanism of a 1-alkanethiol self-assembled monolayer (SAM) covered Au{111} surface using in-situ atomic force microscopy (AFM) and molecular resolution scanning tunnelling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au{111} surface and typically contains nanoscale non-uniformities such as pinholes, domain boundaries and monatomic depressions. During etching in a ferri/ferrocyanide water-based etchant, selective and preferential etching occurs at SAM covered Au(111) terrace and step edges where a lower SAM packing density is observed, resulting in triangular islands being relieved. The triangular islands are commensurate with the Au(111) lattice with their long edges parallel to its [11-0] direction. Thus, SAM etching is selective and preferential attack is localized to defects and step edges at sites of high molecular density contrast.
Resumo:
The nanometer range structure produced by thin films of diblock copolymers makes them a great of interest as templates for the microelectronics industry. We investigated the effect of annealing solvents and/or mixture of the solvents in case of symmetric Poly (styrene-block-4vinylpyridine) (PS-b-P4VP) diblock copolymer to get the desired line patterns. In this paper, we used different molecular weights PS-b-P4VP to demonstrate the scalability of such high χ BCP system which requires precise fine-tuning of interfacial energies achieved by surface treatment and that improves the wetting property, ordering, and minimizes defect densities. Bare Silicon Substrates were also modified with polystyrene brush and ethylene glycol self-assembled monolayer in a simple quick reproducible way. Also, a novel and simple in situ hard mask technique was used to generate sub-7nm Iron oxide nanowires with a high aspect ratio on Silicon substrate, which can be used to develop silicon nanowires post pattern transfer.
Resumo:
This thesis presents details of the design and development of novel tools and instruments for scanning tunneling microscopy (STM), and may be considered as a repository for several years' worth of development work. The author presents design goals and implementations for two microscopes. First, a novel Pan-type STM was built that could be operated in an ambient environment as a liquid-phase STM. Unique features of this microscope include a unibody frame, for increased microscope rigidity, a novel slider component with large Z-range, a unique wiring scheme and damping mechanism, and a removable liquid cell. The microscope exhibits a high level of mechanical isolation at the tunnel junction, and operates excellently as an ambient tool. Experiments in liquid are on-going. Simultaneously, the author worked on designs for a novel low temperature, ultra-high vacuum (LT-UHV) instrument, and these are presented as well. A novel stick-slip vertical coarse approach motor was designed and built. To gauge the performance of the motor, an in situ motion sensing apparatus was implemented, which could measure the step size of the motor to high precision. A new driving circuit for stick-slip inertial motors is also presented, that o ffers improved performance over our previous driving circuit, at a fraction of the cost. The circuit was shown to increase step size performance by 25%. Finally, a horizontal sample stage was implemented in this microscope. The build of this UHV instrument is currently being fi nalized. In conjunction with the above design projects, the author was involved in a collaborative project characterizing N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on Au(111) films. STM was used to characterize Au substrate quality, for both commercial substrates and those manufactured via a unique atomic layer deposition (ALD) process by collaborators. Ambient and UHV STM was then also used to characterize the NHC/Au(111) films themselves, and several key properties of these films are discussed. During this study, the author discovered an unexpected surface contaminant, and details of this are also presented. Finally, two models are presented for the nature of the NHC-Au(111) surface interaction based on the observed film properties, and some preliminary theoretical work by collaborators is presented.