444 resultados para Sarcopenic Obesity
Resumo:
Background: The Centers for Disease Control and Prevention and the US Department of Health and Human Services promote breastfeeding as a strategy for reducing childhood overweight. We evaluated the relation between infant feeding and the development of overweight and obesity throughout life course. Methods: We investigated the association between infant feeding and obesity among 35 526 participants in the Nurses' Health Study II who were followed prospectively from 1989 to 2001. Mothers of participants provided information by mailed questionnaires on the duration of breast- and bottle-feeding, as well as the type of milk or milk substitute in the bottle. Information on body shape at ages 5 and 10, weight at age 18, current weight between 1989 and 2001, and height was reported by the participants. Results: The duration of breastfeeding, including exclusive breastfeeding, was not related to being overweight (25 body mass index (BMI)
Resumo:
Despite attempts to identify the mechanisms by which obesity leads to the development of Type 2 Diabetes (T2D), it remains unclear why some but not all adults with obesity develop T2D. Given the established associations between visceral adipose tissue (VAT) and liver fat with insulin resistance, we hypothesized that compared to age and obesity matched adults who were non-diabetic (NT2D), adults with T2D would have greater amounts of VAT and liver fat. The International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship with Cardiometabolic Risk/Intra-Abdominal Adiposity (INSPIRE ME IAA) aims to study the associations between VAT and liver fat and risk of developing T2D and cardiovascular disease. Four thousand, five hundred and four participants were initially recruited; from this, 2383 White and Asian adults were selected for this ancillary analysis. The NT2D and T2D groups were matched for age, body mass index (BMI) and waist circumference (WC). The T2D and NT2D groups were also compared to participants with either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT; IFG/IGT)). Abdominal adipose tissue was measured by computed tomography; liver fat was estimated using computed tomography-derived mean attenuation. Secondary analysis determined whether differences existed between NT2D and T2D groups in VAT and liver fat accumulation within selected BMI categories for Whites and Asians. We report across sex and race, T2D and IFG/IGT groups had elevated VAT and liver fat compared to the NT2D group (p<0.05). VAT was not different between IFG/IGT and T2D groups (p>0.05), however liver fat was greater in the T2D group compared to the IFG/IGT group in both Whites and Asians (p<0.05). Within each BMI category, the T2D group had elevated VAT and liver fat compared to the age and anthropometrically matched NT2D group in both Whites and Asians (p<0.05). With few exceptions, abdominal subcutaneous adipose tissue was not different in the T2D or IFG/IGT groups compared to the NT2D group independent of sex and race. Compared to age and obesity-matched adults who are NT2D, we observe that White and Asian adults with T2D, and those with IFG/IGT, present with greater levels of both VAT and liver fat.
Resumo:
Background and aim: Within the gastrointestinal tract, vagal afferents regulate satiety and food intake via chemical and mechanical mechanisms. Cysteinyl Leukotrienes (CysLTs) are lipid mediators that are believed to regulate food intake and body weight. However, the involvement of vagal afferents in this effect remains to be established. Conversely, Glucagon like peptide-1 (GLP-1) is a satiety and incretin peptide hormone. The effect of obesity on GLP-1 mediated gut-brain signaling has yet to be investigated. Since intestinal vagal afferents’ activity is reduced during obesity, it is intriguing to investigate their responses to GLP-1 in such conditions. Methods: Extracellular recordings were performed on intestinal afferents from normal C57Bl6, low fat fed (LFF), and high fat fed (HFF) mice. To examine the effect on neuronal calcium signaling, calcium-imaging experiments were performed on isolated nodose ganglion neurons. Food intake experiments were conducted using LFF and HFF mice. Oral glucose tolerance tests (OGTT) were carried out. Whole cell patch clamp recordings were performed on nodose ganglion neurons from A) normal C57Bl mice to test the effect of CysLTs on membrane excitability, B) LFF and HFF mice to examine GLP-1 effect on membrane excitability during obesity. c-Fos immunohistochemical techniques were performed to measure the level of neuronal activation in the brainstem of both LFF and HFF mice in response to Ex-4. Results: CysLTs increased intestinal afferent firing rate and mechanosensitivity. In single nodose neuron experiments, CysLTs increased excitability. The GLP-1 agonist Ex-4 significantly decreased food intake in LFF but not HFF mice. However, Ex-4 markedly attenuated the rise in blood glucose in both LFF and HFF mice. The observed increase in nerve firing and mechanosensitivity following the application of GLP-1 and Ex-4 was abolished in HFF mice. Cell membrane excitability was significantly increased by Ex-4 in nodose from LFF but not HFF mice. Ex-4 significantly increased the number of activated neurons in the NTS area of LFF mice but not in their HFF counterparts. Conclusion: The previous observations indicate that the role CysLTs play in regulating satiety is likely to be vagally mediated. Also that satiety, but not incretin, effects of GLP-1 are impaired during obesity.
Resumo:
Background. Obesity appears to be more common among people with intellectual disabilities, with few studies focusing on achieving weight reduction. Aim. Firstly, to follow up people identified as overweight and obese following special health screening clinics and to determine the actions taken. Secondly, to evaluate the impact of health promotion classes on participants' weight loss. Methods. A clinic led by two learning disbaility nurses was held for all people aged 10 years and over (n=464) who attended special services within the area of one Health and Social Services Trust in Northern Ireland. In a second study, the nurses organised health promotion classes for 20 people over a 6 - 8 week period. Findings. The health screen identified 64% of adults and 26% of 10 - 19 year olds as being overweight or obese. Moreover, those aged 40 - 49 years who were obese had significantly higher levels of blood pressure. However, information obtained from a follow up questionnaire sent after 3 months suggested that of the 122 people identified for wiehgt reduciton, action had been taken for only 34% of them and only three were reported to have lost weight. The health promotion classes, however, led to a significant reduction in weight and body mass index scores. Conclusion. Health screening per se has limited impact on reducing obesity levels in this client group. Rather, health personnel such as general practitioners, nurses and health promotion staff need to work in partnership with service staff, carers and people with intellectual disabiltieis to create more active lifestyles.
Resumo:
Aims/hypothesis Ablation of gastric inhibitory polypeptide ( GIP) receptor action is reported to protect against obesity and associated metabolic abnormalities. The aim of this study was to use prediabetic ob/ob mice to examine whether 60 days of chemical GIP receptor ablation with (Pro(3)) GIP is able to counter the development of genetic obesity-related diabetes.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.