979 resultados para STREPTOCOCCUS THERMOPHILUS
Resumo:
O objetivo deste trabalho foi avaliar a inter-relação entre a suplementação alimentar com parede celular de Saccharomyces cerevisae e a vacinação contra Streptococcus agalactiae e seu efeito sobre o desempenho produtivo e as variáveis hematológicas de tilápia-do-nilo (Oreochromis niloticus). Oitenta e quatro tilápias-do-nilo foram distribuídas em 12 caixas de fibra (n=7), em arranjo fatorial 2x2x3, correspondente a dois níveis de suplementação com parede celular de levedura, dois tipos de inoculação e três tempos de avaliação. Os peixes foram alimentados durante 77 dias. A vacinação dos peixes foi realizada 60 dias após o início da alimentação. Quinze dias após a vacinação, todos os peixes foram submetidos ao desafio com cepa viva de S. agalactiae, e 6, 24 e 48 horas após o desafio, o sangue foi colhido da veia caudal para avaliações. Peixes alimentados com ração suplementada apresentam maior ganho de peso e taxa de crescimento específico, e a interação entre os efeitos da dieta e da vacinação resulta em maiores taxas de hematócrito, hemoglobina e leucócitos.
Resumo:
Beta-hemolytic Streptococcus agalactiae is the leading cause of bacteremia and invasive infections. These diseases are treated with β-lactams or macrolides, but the emergence of less susceptible and even fully resistant strains is a cause for concern. New bacteriophage lysins could be promising alternatives against such organisms. They hydrolyze the bacterial peptidoglycan at the end of the phage cycle, in order to release the phage progeny. By using a bioinformatic approach to screen several beta-hemolytic streptococci, a gene coding for a lysin was identified on a prophage carried by Streptococcus dysgalactiae subsp. equisimilis SK1249. The gene product, named PlySK1249, harbored an original three-domain structure with a central cell wall-binding domain surrounded by an N-terminal amidase and a C-terminal CHAP domain. Purified PlySK1249 was highly lytic and bactericidal for S. dysgalactiae (2-log10 CFU/ml decrease within 15 min). Moreover, it also efficiently killed S. agalactiae (1.5-log10 CFU/ml decrease within 15 min) but not several streptococcal commensal species. We further investigated the activity of PlySK1249 in a mouse model of S. agalactiae bacteremia. Eighty percent of the animals (n = 10) challenged intraperitoneally with 10(6) CFU of S. agalactiae died within 72 h, whereas repeated injections of PlySK1249 (45 mg/kg 3 times within 24 h) significantly protected the mice (P < 0.01). Thus, PlySK1249, which was isolated from S. dysgalactiae, demonstrated high cross-lytic activity against S. agalactiae both in vitro and in vivo. These encouraging results indicated that PlySK1249 might represent a good candidate to be developed as a new enzybiotic for the treatment of systemic S. agalactiae infections.
Resumo:
Empirical antibiotic therapy of community-acquired pneumonia (CAP) has been complicated by the worldwide emergence of penicillin resistance among Streptococcus pneumoniae. The impact of this resistance on the outcome of patients hospitalized for CAP, empirically treated with betalactams, has not been evaluated in a randomized study. We conducted a prospective, randomized trial to assess the efficacy of amoxicillin-clavulanate (2 g/200 mg/8 hr) and ceftriaxone (1 g/24 hr) in a cohort of patients hospitalized for moderate-to-severe CAP. Three-hundred seventy-eight patients were randomized to receive amoxicillin-clavulanate (184 patients) or ceftriaxone (194 patients). Efficacy was assessed on Day 2, after completion of therapy and at long term follow-up. There were no significant differences in outcomes between treatment groups, both in intention-to-treat and per-protocol analysis. Overall mortality was 10.3% for amoxicillin-clavulanate and 8.8% for ceftriaxone (NS). There were 116 evaluable patients with proven pneumococcal pneumonia. Rates of high-level penicillin resistance (MIC of penicillin ≥2 µg/mL) were similar in the two groups (8.2 and 10.2%). Clinical efficacy at the end of therapy was 90.6% for amoxicillin-clavulanate and 88.9% for ceftriaxone (95% C.I. of the difference: -9.3 to +12.7%). No differences in outcomes were attributable to differences in penicillin susceptibility of pneumococcal strains. Sequential i.v./oral amoxicillin-clavulanate and parenteral ceftriaxone were equally safe and effective for the empirical treatment of acute bacterial pneumonia, including penicillin and cephalosporin-resistant pneumococcal pneumonia. The use of appropriate betalactams in patients with penumococcal pneumonia and in the overall CAP population, is reliable at the current level of resistance
Resumo:
PURPOSE: To identify risk factors associated with mortality in patients with severe community-acquired pneumonia (CAP) caused by S. pneumoniae who require intensive care unit (ICU) management, and to assess the prognostic values of these risk factors at the time of admission. METHODS: Retrospective analysis of all consecutive patients with CAP caused by S. pneumoniae who were admitted to the 32-bed medico-surgical ICU of a community and referral university hospital between 2002 and 2011. Univariate and multivariate analyses were performed on variables available at admission. RESULTS: Among the 77 adult patients with severe CAP caused by S. pneumoniae who required ICU management, 12 patients died (observed mortality rate 15.6 %). Univariate analysis indicated that septic shock and low C-reactive protein (CRP) values at admission were associated with an increased risk of death. In a multivariate model, after adjustment for age and gender, septic shock [odds ratio (OR), confidence interval 95 %; 4.96, 1.11-22.25; p = 0.036], and CRP (OR 0.99, 0.98-0.99 p = 0.034) remained significantly associated with death. Finally, we assessed the discriminative ability of CRP to predict mortality by computing its receiver operating characteristic curve. The CRP value cut-off for the best sensitivity and specificity was 169.5 mg/L to predict hospital mortality with an area under the curve of 0.72 (0.55-0.89). CONCLUSIONS: The mortality of patients with S. pneumoniae CAP requiring ICU management was much lower than predicted by severity scores. The presence of septic shock and a CRP value at admission <169.5 mg/L predicted a fatal outcome.
Resumo:
Enterococcus faecalis and Streptococcus gallolyticus cause infective endocarditis (IE), which can originate from the continuous release or translocation of low bacterial numbers into the bloodstream. In this context, IE cannot be prevented with antibiotics. We previously demonstrated that aspirin plus ticlopidine protected rats from IE due to S. gordonii and Staphylococcus aureus. Here we showed that aspirin plus ticlopidine significantly reduced vegetation weight and protected 73 and 64% rats (P < 0.005) from IE due to E. faecalis and S. gallolyticus, respectively. These results further support the potential use of aspirin plus ticlopidine for a global prevention of IE in high-risk patients.
Resumo:
Background: Since the use of pneumococcal conjugate vaccines PCV7 and PCV13 in children became widespread, invasive pneumococcal disease (IPD) has dramatically decreased. Nevertheless, there has been a rise in incidence of Streptococcus pneumoniae non-vaccine serotypes (NVT) colonising the human nasopharynx. Nasopharyngeal colonisation, an essential step in the development of S. pneumoniae-induced IPD, is associated with biofilm formation. Although the capsule is the main pneumococcal virulence factor, the formation of pneumococcal biofilms might, in fact, be limited by the presence of capsular polysaccharide (CPS). Methodology/Principal Findings: We used clinical isolates of 16 emerging, non-PCV13 serotypes as well as isogenic transformants of the same serotypes. The biofilm formation capacity of isogenic transformants expressing CPSs from NVT was evaluated in vitro to ascertain whether this trait can be used to predict the emergence of NVT. Fourteen out of 16 NVT analysed were not good biofilm formers, presumably because of the presence of CPS. In contrast, serotypes 11A and 35B formed >45% of the biofilm produced by the non-encapsulated M11 strain. Conclusions/Significance This study suggest that emerging, NVT serotypes 11A and 35B deserve a close surveillance.
Resumo:
Streptococcus suis is an emerging zoonotic agent. Human infection is associated with occupational exposure to swine. Affected persons are usually, but not always, healthy (1,2). Immunosuppressive conditions can predispose persons to S. suis infection, and cancer has classically been associated as a risk factor for S. suis infection (1,2). Nevertheless, the actual number of reported cases is low (27). We describe a severe case of S. suis infection in a man who had not been exposed to swine but for whom disseminated cancer was diagnosed 5 months after the infection.
Resumo:
Streptococcus suis is an emerging zoonotic agent. Human infection is associated with occupational exposure to swine. Affected persons are usually, but not always, healthy (1,2). Immunosuppressive conditions can predispose persons to S. suis infection, and cancer has classically been associated as a risk factor for S. suis infection (1,2). Nevertheless, the actual number of reported cases is low (27). We describe a severe case of S. suis infection in a man who had not been exposed to swine but for whom disseminated cancer was diagnosed 5 months after the infection.
Resumo:
Streptococcus suis is an important pig pathogen but it is also zoonotic, i.e. capable of causing diseases in humans. Human S. suis infections are quite uncommon but potentially life-threatening and the pathogen is an emerging public health concern. This Gram-positive bacterium possesses a galabiose-specific (Galalpha1−4Gal) adhesion activity, which has been studied for over 20 years. P-fimbriated Escherichia coli−bacteria also possess a similar adhesin activity targeting the same disaccharide. The galabiose-specific adhesin of S. suis was identified by an affinity proteomics method. No function of the protein identified was formerly known and it was designated streptococcal adhesin P (SadP). The peptide sequence of SadP contains an LPXTG-motif and the protein was proven to be cell wall−anchored. SadP may be multimeric since in SDS-PAGE gel it formed a protein ladder starting from about 200 kDa. The identification was confirmed by producing knockout strains lacking functional adhesin, which had lost their ability to bind to galabiose. The adhesin gene was cloned in a bacterial expression host and properties of the recombinant adhesin were studied. The galabiose-binding properties of the recombinant protein were found to be consistent with previous results obtained studying whole bacterial cells. A live-bacteria application of surface plasmon resonance was set up, and various carbohydrate inhibitors of the galabiose-specific adhesins were studied with this assay. The potencies of the inhibitors were highly dependent on multivalency. Compared with P-fimbriated E. coli, lower concentrations of galabiose derivatives were needed to inhibit the adhesion of S. suis. Multivalent inhibitors of S. suis adhesion were found to be effective at low nanomolar concentrations. To specifically detect galabiose adhesin−expressing S. suis bacteria, a technique utilising magnetic glycoparticles and an ATP bioluminescence bacterial detection system was also developed. The identification and characterisation of the SadP adhesin give valuable information on the adhesion mechanisms of S. suis, and the results of this study may be helpful for the development of novel inhibitors and specific detection methods of this pathogen.
Resumo:
OBJETIVOS: verificar a ocorrência de colonização por Streptococcus agalactiae em gestantes e avaliar a suscetibilidade das amostras isoladas aos antimicrobianos. MÉTODOS: foram avaliadas 167 grávidas entre a 32ª e a 41ª semana de gestação, independente da presença ou não de fatores de risco, atendidas no ambulatório de pré-natal entre fevereiro de 2003 e fevereiro de 2004. O material vaginal/anal, colhido com um único swab, foi inoculado em caldo Todd-Hewitt acrescido de ácido nalidíxico (15 µg/mL) e gentamicina (8 µg/mL), com posterior subcultura no meio de ágar sangue. A identificação foi feita por meio da avaliação da morfologia e tipo de hemólise das colônias no meio de ágar sangue, teste da catalase, teste de cAMP e testes sorológicos. A avaliação da suscetibilidade aos antimicrobianos foi realizada pelos testes de difusão e de diluição em ágar. A análise estatística foi realizada por meio do teste de chi2; valores de p<0,05 foram considerados significativos. RESULTADOS: a freqüência de colonização foi de 19,2%, sem diferenças significativas com relação à idade, número de gestações, ocorrência de abortos e presença ou ausência de diabete melito (p>0,05). Todas as 32 amostras isoladas foram sensíveis a penicilina, cefotaxima, ofloxacina, cloranfenicol, vancomicina e meropenem. A resistência a eritromicina e clindamicina foi detectada em 9,4 e 6,2% das amostras, respectivamente. CONCLUSÕES: a incidência relativamente elevada (19,2%) de colonização por S. agalactiae entre as gestantes avaliadas e o isolamento de amostras resistentes, especialmente aos antimicrobianos recomendados nos casos de alergia à penicilina, enfatizam a importância de detectar esta colonização no final da gravidez, associada à avaliação da suscetibilidade aos antimicrobianos, para uma prevenção eficaz da infecção neonatal.