868 resultados para Rule-based techniques
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thermal faceprint has been paramount in the last years. Since we can handle with face recognition using images acquired in the infrared spectrum, an unique individual's signature can be obtained through the blood vessels network of the face. In this work, we propose a novel framework for thermal faceprint extraction using a collection of graph-based techniques, which were never used to this task up to date. A robust method of thermal face segmentation is also presented. The experiments, which were conducted over the UND Collection C dataset, have showed promising results. © 2011 Springer-Verlag.
Resumo:
Parkinson's disease (PD) automatic identification has been actively pursued over several works in the literature. In this paper, we deal with this problem by applying evolutionary-based techniques in order to find the subset of features that maximize the accuracy of the Optimum-Path Forest (OPF) classifier. The reason for the choice of this classifier relies on its fast training phase, given that each possible solution to be optimized is guided by the OPF accuracy. We also show results that improved other ones recently obtained in the context of PD automatic identification. © 2011 IEEE.
Resumo:
Despite the efficacy of minutia-based fingerprint matching techniques for good-quality images captured by optical sensors, minutia-based techniques do not often perform so well on poor-quality images or fingerprint images captured by small solid-state sensors. Solid-state fingerprint sensors are being increasingly deployed in a wide range of applications for user authentication purposes. Therefore, it is necessary to develop new fingerprint-matching techniques that utilize other features to deal with fingerprint images captured by solid-state sensors. This paper presents a new fingerprint matching technique based on fingerprint ridge features. This technique was assessed on the MSU-VERIDICOM database, which consists of fingerprint impressions obtained from 160 users (4 impressions per finger) using a solid-state sensor. The combination of ridge-based matching scores computed by the proposed ridge-based technique with minutia-based matching scores leads to a reduction of the false non-match rate by approximately 1.7% at a false match rate of 0.1%. © 2005 IEEE.
Resumo:
Although nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.
Resumo:
In the last couple of decades we assisted to a reappraisal of spatial design-based techniques. Usually the spatial information regarding the spatial location of the individuals of a population has been used to develop efficient sampling designs. This thesis aims at offering a new technique for both inference on individual values and global population values able to employ the spatial information available before sampling at estimation level by rewriting a deterministic interpolator under a design-based framework. The achieved point estimator of the individual values is treated both in the case of finite spatial populations and continuous spatial domains, while the theory on the estimator of the population global value covers the finite population case only. A fairly broad simulation study compares the results of the point estimator with the simple random sampling without replacement estimator in predictive form and the kriging, which is the benchmark technique for inference on spatial data. The Monte Carlo experiment is carried out on populations generated according to different superpopulation methods in order to manage different aspects of the spatial structure. The simulation outcomes point out that the proposed point estimator has almost the same behaviour as the kriging predictor regardless of the parameters adopted for generating the populations, especially for low sampling fractions. Moreover, the use of the spatial information improves substantially design-based spatial inference on individual values.
Resumo:
Written text is an important component in the process of knowledge acquisition and communication. Poorly written text fails to deliver clear ideas to the reader no matter how revolutionary and ground-breaking these ideas are. Providing text with good writing style is essential to transfer ideas smoothly. While we have sophisticated tools to check for stylistic problems in program code, we do not apply the same techniques for written text. In this paper we present TextLint, a rule-based tool to check for common style errors in natural language. TextLint provides a structural model of written text and an extensible rule-based checking mechanism.
Resumo:
Model based calibration has gained popularity in recent years as a method to optimize increasingly complex engine systems. However virtually all model based techniques are applied to steady state calibration. Transient calibration is by and large an emerging technology. An important piece of any transient calibration process is the ability to constrain the optimizer to treat the problem as a dynamic one and not as a quasi-static process. The optimized air-handling parameters corresponding to any instant of time must be achievable in a transient sense; this in turn depends on the trajectory of the same parameters over previous time instances. In this work dynamic constraint models have been proposed to translate commanded to actually achieved air-handling parameters. These models enable the optimization to be realistic in a transient sense. The air handling system has been treated as a linear second order system with PD control. Parameters for this second order system have been extracted from real transient data. The model has been shown to be the best choice relative to a list of appropriate candidates such as neural networks and first order models. The selected second order model was used in conjunction with transient emission models to predict emissions over the FTP cycle. It has been shown that emission predictions based on air-handing parameters predicted by the dynamic constraint model do not differ significantly from corresponding emissions based on measured air-handling parameters.
Resumo:
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.
Resumo:
Minimally invasive vertebral augmentation-based techniques have been used for the treatment of spinal fractures (osteoporotic and malignant) for approximately 25 years. In this review, we try to give an overview of the current spectrum of percutaneous augmentation techniques, safety aspects and indications. Crucial factors for success are careful patient selection, proper technique and choice of the ideal cement augmentation option. Most compression fractures present a favourable natural course, with reduction of pain and regainment of mobility after a few days to several weeks, whereas other patients experience a progressive collapse and persisting pain. In this situation, percutaneous cement augmentation is an effective treatment option with regards to pain and disability reduction, improvement of quality of life and ambulatory and pulmonary function.
Resumo:
Aberrations of the acoustic wave front, caused by spatial variations of the speed-of-sound, are a main limiting factor to the diagnostic power of medical ultrasound imaging. If not accounted for, aberrations result in low resolution and increased side lobe level, over all reducing contrast in deep tissue imaging. Various techniques have been proposed for quantifying aberrations by analysing the arrival time of coherent echoes from so-called guide stars or beacons. In situations where a guide star is missing, aperture-based techniques may give ambiguous results. Moreover, they are conceptually focused on aberrators that can be approximated as a phase screen in front of the probe. We propose a novel technique, where the effect of aberration is detected in the reconstructed image as opposed to the aperture data. The varying local echo phase when changing the transmit beam steering angle directly reflects the varying arrival time of the transmit wave front. This allows sensing the angle-dependent aberration delay in a spatially resolved way, and thus aberration correction for a spatially distributed volume aberrator. In phantoms containing a cylindrical aberrator, we achieved location-independent diffraction-limited resolution as well as accurate display of echo location based on reconstructing the speed-of-sound spatially resolved. First successful volunteer results confirm the clinical potential of the proposed technique.
Resumo:
This paper presents a shallow dialogue analysis model, aimed at human-human dialogues in the context of staff or business meetings. Four components of the model are defined, and several machine learning techniques are used to extract features from dialogue transcripts: maximum entropy classifiers for dialogue acts, latent semantic analysis for topic segmentation, or decision tree classifiers for discourse markers. A rule-based approach is proposed for solving cross-modal references to meeting documents. The methods are trained and evaluated thanks to a common data set and annotation format. The integration of the components into an automated shallow dialogue parser opens the way to multimodal meeting processing and retrieval applications.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach.
Resumo:
The most successful unfolding rules used nowadays in the partial evaluation of logic programs are based on well quasi orders (wqo) applied over (covering) ancestors, i.e., a subsequence of the atoms selected during a derivation. Ancestor (sub)sequences are used to increase the specialization power of unfolding while still guaranteeing termination and also to reduce the number of atoms for which the wqo has to be checked. Unfortunately, maintaining the structure of the ancestor relation during unfolding introduces significant overhead. We propose an efficient, practical local unfolding rule based on the notion of covering ancestors which can be used in combination with a wqo and allows a stack-based implementation without losing any opportunities for specialization. Using our technique, certain non-leftmost unfoldings are allowed as long as local unfolding is performed, i.e., we cover depth-first strategies. To deal with practical programs, we propose assertion-based techniques which allow our approach to treat programs that include (Prolog) built-ins and external predicates in a very extensible manner, for the case of leftmost unfolding. Finally, we report on our mplementation of these techniques embedded in a practical partial evaluator, which shows that our techniques, in addition to dealing with practical programs, are also significantly more efficient in time and somewhat more efficient in memory than traditional tree-based implementations. To appear in Theory and Practice of Logic Programming (TPLP).