966 resultados para Rule of the road at sea.
Resumo:
Diagenesis has extensively affected the magnetic mineral inventory of organic-rich late Quaternary sediments in the Niger deep-sea fan. Changes in concentration, grain size, and coercivity document modifications of the primary magnetic mineral assemblages at two horizons. The first front, the modern iron redox boundary, is characterized by a drastic decline in magnetic mineral content, coarsening of the grain size spectrum, and reduction in coercivity. Beneath a second front, the transition from the suboxic to the sulfidic anoxic domain, a further but less pronounced decrease in concentration and bulk grain size occurs. Finer grains and higher coercive magnetic constituents substantially increase in the anoxic environment. Low- and high-temperature experiments were performed on bulk sediments and on extracts which have also been examined by X-ray diffraction. Thermomagnetic analyses proved ferrimagnetic titanomagnetites of terrigenous provenance as the principal primary magnetic mineral components. Their broad range of titanium contents reflects the volcanogenic traits of the Niger River drainage areas. Diagenetic alteration is not only a grain size selective process but also critically depends on titanomagnetite composition. Low-titanium compounds are less resistant to diagenetic dissolution. Intermediate titanium content titanomagnetite thus persists as the predominant magnetic mineral fraction in the sulfidic anoxic sediments. At the Fe redox boundary, precipitation of authigenic, possibly bacterial, magnetite is documented. The presence of hydrogen sulfide in the pore water suggests a formation of secondary magnetic iron sulfides in the anoxic domain. Grain size-specific data argue for a gradual development of a superparamagnetic and single-domain iron sulfide phase in this milieu, most likely greigite.
Resumo:
The sheet "Darß" of the Western Baltic sediment distribution map displays several features of the late- and postglacial sediments in the area between 54°00? and 54°30? northern latitude and 12°00? and 13°00? eastern longitude on a scale of 1: 100,000. The main map shows the surface deposits in this area. Special attention is given to a detailed presentation of the granulometric characteristics of the sandy sedimens which are prevailing here. For this purpose a new way of visualization of grain size data was developed. Six insets provide information on water depth, positions of the sampling sites, areal distribution of median and sorting of sands, depth of the till surface thickness of the late- and postglacial sediments on top of the uppermost till and the bathymetry.
Resumo:
High-resolution benthic foraminiferal and geochemical investigations were carried out across sapropels S5 and S6 from two sediment cores in the Levantine Sea to evaluate the impact of climatic and environmental changes on benthic ecosystems during times of sapropel formation. The faunal successions indicate that eutrophication and/or oxygen reduction started several thousand years prior to the onset of sapropel formation, suggesting an early response of the bathyal ecosystems to climatic changes. Severest oxygen depletions appear in the early phases of sapropel formation. The initial reduction of deep-water ventilation is caused by a warming and fresh water-induced stratification of Eastern Mediterranean surface waters. During the late phase of S5 formation improved oxygenation is restricted to middle bathyal ecosystems, indicating that at least some formation of subsurface water took place. During S6 formation oxygen depletions and eutrophication were less severe and more variable than during S5 formation. Estimated oxygen contents were low dysoxic at middle bathyal to anoxic at lower bathyal depths during the early phase of S6 formation but never dropped to anoxic values in its late phase. The high benthic ecosystem variability during S6 formation suggests that water column stratification at deep-water formation sites was in a very unstable mode and susceptible to minor temperature fluctuations at a millennial time-scale.
Resumo:
An analysis of variations in 137Cs and 90Sr concentrations in Baltic Sea surface waters after the accident at the Chernobyl nuclear power plant was performed. Instability of 137Cs concentrations during the short-term observations was found, when they differed 2- to 3-fold. Concentrations of 90Sr appeared to be more stable; meanwhile, their deviations sometimes exceeded ranges of experimental errors. By variations in the monthly average values of radionuclide concentrations in surface waters of the Baltic Sea in 1989-1995, no trend of water self-purification was observed. Theoretical results obtained confirmed a potential of formation and propagation of patches with increased concentrations of 137Cs in the southeastern Baltic Sea. The most reliable factor that controlled the process of self-purification of Baltic Sea water appeared to be the mean annual value of radionuclide concentration. Pronounced divergences were obtained between the measured and calculated mean annual concentrations of 137Cs and 90Sr in surface waters of the Baltic Sea in 1989-2001. These divergences are explained by potential influence of waters from the Gulf of Bothnia and by other additional supplies of radionuclides to marine environment, which were not included into mathematical models.
Resumo:
An integrated (petrographical and micropaleontological) study of sedimentary cover samples dredged from the lower slopes of the Kuril deep-sea basin was carried out. Pliocene-Pleistocene sediments are mainly represented by tuffaceous sedimentary rocks (tuffites, tuffaceous muds, tuffaceous diatomites, tuffaceous silts, tuffaceous sandstones, etc.). Significant admixtures of pyroclastic matter, especially of volcanic glasses, indicates that sedimentation process was accompanied by explosive volcanism. The data obtained give evidence about intensification of tectonomagmatic regime within the region under study during Pliocene-Pleistocene time. By the beginning of Pliocene, a deep-sea basin with a well-manifested continental and/or island slope and a narrow shelf already existed. Pliocene-Pleistocene deposits accumulated in a cold well-aerated deep-sea basin under oxic conditions and downslope sediment transport.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.
Resumo:
Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.
Resumo:
The study of diatoms and benthic foraminifers from the southeastern shelf of the Laptev Sea shows that their most diverse and abundant recent assemblages populate the peripheral underwater part of the Lena River delta representing the marginal filter of the sea. This area is characterized by intense interaction between fresh waters of Siberian rivers and basin seawater, Atlantic one included. Local Late Holocene (~last 2300 years) environments reflect the main regional and global paleoclimatic changes, the Medieval Warm Period (~600-1100 years B.P.) and the Little Ice Age (~100-600 years B.P.) inclusive. In addition, composition and distribution of planktonic foraminifers implies strong influence of Atlantic water during the Holocene optimum ~5100-6200 years B.P.
Resumo:
Leg 90 of the Deep Sea Drilling Project drilled 18 holes at eight sites (Sites 587-594) on several shallow-water platforms in the southern Coral Sea, Tasman Sea, and southwestern Pacific Ocean. The results from an additional hole (Hole 586B) drilled at Site 586 during Leg 89 are included in this report. Together, these sites form a latitudinal traverse which extends from the equator (Site 586) to 45°S (Site 594) and includes all the major water masses from tropical to subantarctic. Samples recovered at these sites range in age from middle Eocene to late Quaternary. The calcareous nannoplankton biostratigraphy for Leg 90 has divided into two parts: part 1, the Neogene and Quaternary of Sites 586-594. (this chapter); and part 2, the Paleogene of Sites 588, 592, and 593 (Martini, 1986). A slightly modified version of the Martini (1971) standard Tertiary and Quaternary zonation scheme was used to make age determinations on over 700 samples. All of the relevant Neogene and Quaternary zone-defining nannoplankton are present at Sites 586-591 (0°-30°S) but become increasingly rare or are absent at Sites 592-594 (35°-45°S). Species diversity increases southward from the equator (Site 586) and reaches a peak at 20°S (Site 587). A decrease at 25°S (Site 588) and 30°S (Sites 589-591) is followed by an increase in species diversity at 35°S (Site 592). South of 35°S, species diversity again decreases and reaches a low at 45 °S (Site 594). Species diversity for all sites as a group generally increases through the early, middle, and late Miocene, reaches a peak in the early Pliocene, then gradually decreases through the late Pliocene and Quaternary