971 resultados para Rotational inertia
Resumo:
Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding.
Resumo:
The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties. © 2011 American Institute of Physics.
Resumo:
This paper reports the findings from internal mould cooling trials using a water spray configuration applied at various internal mould air temperatures from 120°C to 180°C for an aluminium mould. To achieve maximum benefit in terms of cycle time reduction, internal mould water cooling was used in conjunction with a combination of external forced air and water cooling. Savings in cooling times of up to 30% were achieved compared to conventional external only forced air cooling.
Resumo:
The temperature at which densification ends for a range of blends comprising a metallocene catalysed medium density polyethylene (PE) in two different physical forms (powder and micropellets) were investigated using a novel data acquisition system (TP Picture®), developed by Total Petrochemicals [1]. The various blends were subsequently rotomoulded and test specimens prepared for mechanical analysis to establish the relationship between densification rate and bubble size / distribution on the part properties. The micropellets exhibited more rapid bubble removal times than powder.
Resumo:
The aim of this work has been to adapt and apply the advantages of rapid prototyping and electroforming technologies to try to achieve an innovative mould design for rotational moulding. The new innovative design integrates an electroformed shell, manufactured starting from a rapid prototyping mandrel, with different designed standard aluminium tools. The shell holder enables mould assembly with high precision manufacture of a shell in a few minutes. The overall mould cost is significantly decreased because it is only necessary to manufacture one or two shells each time; however, the rest of the elements of the mould are standard and usable for an infinite number of shells, depending on size.
Resumo:
Context. Comet 67P/Churyumov-Gerasimenko is the target of the European Space Agency Rosetta spacecraft rendez-vous mission. Detailed physical characteristation of the comet before arrival is important for mission planning as well as providing a test bed for ground-based observing and data-analysis methods. Aims: To conduct a long-term observational programme to characterize the physical properties of the nucleus of the comet, via ground-based optical photometry, and to combine our new data with all available nucleus data from the literature. Methods: We applied aperture photometry techniques on our imaging data and combined the extracted rotational lightcurves with data from the literature. Optical lightcurve inversion techniques were applied to constrain the spin state of the nucleus and its broad shape. We performed a detailed surface thermal analysis with the shape model and optical photometry by incorporating both into the new Advanced Thermophysical Model (ATPM), along with all available Spitzer 8-24 μm thermal-IR flux measurements from the literature. Results: A convex triangular-facet shape model was determined with axial ratios b/a = 1.239 and c/a = 0.819. These values can vary by as much as 7% in each axis and still result in a statistically significant fit to the observational data. Our best spin state solution has Psid = 12.76137 ± 0.00006 h, and a rotational pole orientated at Ecliptic coordinates λ = 78°(±10°), β = + 58°(±10°). The nucleus phase darkening behaviour was measured and best characterized using the IAU HG system. Best fit parameters are: G = 0.11 ± 0.12 and HR(1,1,0) = 15.31 ± 0.07. Our shape model combined with the ATPM can satisfactorily reconcile all optical and thermal-IR data, with the fit to the Spitzer 24 μm data taken in February 2004 being exceptionally good. We derive a range of mutually-consistent physical parameters for each thermal-IR data set, including effective radius, geometric albedo, surface thermal inertia and roughness fraction. Conclusions: The overall nucleus dimensions are well constrained and strongly imply a broad nucleus shape more akin to comet 9P/Tempel 1, rather than the highly elongated or "bi-lobed" nuclei seen for comets 103P/Hartley 2 or 8P/Tuttle. The derived low thermal inertia of
Resumo:
Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.
Resumo:
Abstract. Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with respect to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger’s rotating assembly, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is desirable for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine designs.
This study considers the meridional geometry of Mixed Flow Turbines using a multi-disciplinary study to assess both the structural and aerodynamic performance of each rotor, incorporating both CFD and FEA. Variations of rotor trailing edge were investigated at different operating conditions representing both on- and off-design operation within the constraints of existing hardware geometries. In all cases, the performance is benchmarked against an existing state-of-the-art radial turbocharger turbine with consideration of rotor inertia and its benefit for engine transient performance. The results indicate the influence of these parameters and this report details their benefits with respect to turbocharging a downsized, automotive engine.
Resumo:
Automotive manufacturers require improved part load engine performance to further improve fuel economy. For a swing vane VGS (Variable Geometry Stator) turbine this means a more closed stator vane, to deal with the low MFRs (Mass Flow Rates), high PRs (Pressure Ratios) and low rotor rotational speeds. During these conditions the turbine is operating at low velocity ratios. As more energy is available at high pressure ratios and during lower turbocharger rotational speeds, a turbine which is efficient at these conditions is desirable. Another key aspect for automotive manufacturers is engine responsiveness. High inertia designs result in “turbo lag” which means an increased time before the target boost pressure is reached. Therefore, designs with improved performance at low velocity ratios, reduced inertia or an increased swallowing capacity are the current targets for turbocharger manufacturers.
To try to meet these design targets a CFD (Computational Fluid Dynamics) study was performed on a turbine wheel using splitter blades. A number of parameters were investigated. These included splitter blade merdional length, blade number and blade angle distribution.
The numerical study was performed on a scaled automotive VGS. Three different stator vane positions have been analysed. A single passage CFD model was developed and used to provide information on the flow features affecting performance in both the stator vanes and turbine.
Following the CFD investigation the design with the best compromise in terms of performance, inertia and increased MFP (Mass Flow Parameter) was selected for manufacture and testing. Tests were performed on a scaled, low temperature turbine test rig. The aerodynamic flow path of the gas stand was the same as that investigated during the CFD. The test results revealed a design which had similar performance at the closed stator vane positions when compared to the baseline wheel. At the maximum MFR stator vane condition a drop of −0.6% pts in efficiency was seen. However, 5.5% increase in MFP was obtained with the additional benefit of a drop in rotor inertia of 3.7%, compared to the baseline wheel.
Resumo:
Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.
Resumo:
Several recent studies have described the period of impaired alertness and performance known as sleep inertia that occurs upon awakening from a full night of sleep. They report that sleep inertia dissipates in a saturating exponential manner, the exact time course being task dependent, but generally persisting for one to two hours. A number of factors, including sleep architecture, sleep depth and circadian variables are also thought to affect the duration and intensity. The present study sought to replicate their findings for subjective alertness and reaction time and also to examine electrophysiological changes through the use of event-related potentials (ERPs). Secondly, several sleep parameters were examined for potential effects on the initial intensity of sleep inertia. Ten participants spent two consecutive nights and subsequent mornings in the sleep lab. Sleep architecture was recorded for a fiiU nocturnal episode of sleep based on participants' habitual sleep patterns. Subjective alertness and performance was measured for a 90-minute period after awakening. Alertness was measured every five minutes using the Stanford Sleepiness Scale (SSS) and a visual analogue scale (VAS) of sleepiness. An auditory tone also served as the target stimulus for an oddball task designed to examine the NlOO and P300 components ofthe ERP waveform. The five-minute oddball task was presented at 15-minute intervals over the initial 90-minutes after awakening to obtain six measures of average RT and amplitude and latency for NlOO and P300. Standard polysomnographic recording were used to obtain digital EEG and describe the night of sleep. Power spectral analyses (FFT) were used to calculate slow wave activity (SWA) as a measure of sleep depth for the whole night, 90-minutes before awakening and five minutes before awakening.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 C54 L434 1989
Resumo:
Micromorphology is used to analyze a wide range of sediments. Many microstructures have, as yet, not been analyzed. Rotation structures are the least understood of microstructures: their origin and development forms the basis of this thesis. Direction of rotational movement helps understand formative deformational and depositional processes. Twenty-eight rotation structures were analyzed through two methods of data extraction: (a) angle of grain rotation measured from Nikon NIS software, and (b) visual analyses of grain orientation, neighbouring grainstacks, lineations, and obstructions. Data indicates antithetic rotation is promoted by lubrication, accounting for 79% of counter-clockwise rotation structures while 21 % had clockwise rotation. Rotation structures are formed due to velocity gradients in sediment. Subglacial sediments are sheared due to overlying ice mass stresses. The grains in the sediment are differentially deformed. Research suggests rotation structures are formed under ductile conditions under low shear, low water content, and grain numbers inducing grain-to-grain interaction.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
High resolution optogalvanic spectrum of the (11, 7) band in the first positive system of nitrogen molecule has been recorded from 17179 to 17376 cm- 1. Assignment of 432 rotational lines belonging to the 27 branches of this band has been carried out.