941 resultados para Rotating disk electrodes
Resumo:
We describe an X-band ESR cavity for angular variation studies on single crystals at room temperature. The cavity was found to have a high Q over wide rotation angles. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Partial discharges in a gaseous interface due to the presence of a dielectric between two uniform field electrodes in air at different pressures from 0.5 to 685 mm Hg have been studied and measurements of inception and extinction voltages, number of pulses and their charge magnitudes at inception are reported. It has been observed that the extinction voltage can be as low as 70% of the inception voltage suggesting that the working voltage in such cases should be about 30% lower than the observed inception voltage. Small magnitude pulses are found to be more in number than large magnitude pulses. The charge is found to be pressure dependent. The results have been explained on the basis of an equivalent circuit consisting of resistance and capacitance in which the discharge gap functions as a switch.
Resumo:
The free convection problem with nonuniform gravity finds applications in several fields. For example, centrifugal gravity fieldsarisein many rotating machinery applications. A gravity field is also created artificially in an orbital space station by rotation. The effect of nonuniform gravity due to the rotation of isothermal or nonisothermal plates has been studied by several authors [l-5] using various mathematical techniques.
Resumo:
The non-linear equations of motion of a rotating blade undergoing extensional and flapwise bending vibration are derived, including non-linearities up to O (ε3). The strain-displacement relationship derived is compared with expressions derived by earlier investigators and the errors and the approximations made in some of those are brought out. The equations of motion are solved under the inextensionality condition to obtain the influence of the amplitude on the fundamental flapwise natural frequency of the rotating blade. It is found that large finite amplitudes have a softening effect on the flapwise frequency and that this influence becomes stronger at higher speeds of rotation.
Resumo:
Electrochemical data are reported for oxygen reduction on platinized coconut-shell charcoal electrodes in 2.5M H*SO,, and 7M HsF’04. In both these media the electrodes exhibit good activity and can sustain currents up to 600 mA cm-* at a polarization of about 400 mV from their rest potentials. The overall performance is comparable with the best type of carbonsupported platinum electrodes reported in the literature.
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Heat transfer in a MHD flow between two infinite eccentric disks rotating with different speeds is considered when the plates are maintained at different temperatures. The results for the corresponding nonmagnetic case presented wrongly by Banerjee and Borkakati [7] are corrected. It is observed that the eccentric rotation reduces the heat transfer on the disks.
Resumo:
Experimental results for breakdown voltage of sodium vapour measured for the first time using coaxial cylindrical electrodes of fixed gap distance (5 mm) and pressure (corrected to2 0 "C) in the range2 1 to 652 Pa are reported, and are founfdo l ltoow Paschen's Law. The investigations also reveal that V th-Ie characteristics are pressure dependent; the current during the breakdown and the buoifl dc-uurpre nt after a breakdoiws nei ther positive or negative. in spite of the central cylinder being always maintained at a positive potential
Resumo:
A pressed-plate Fe electrode for alkalines storage batteries, designed using a statistical method (fractional factorial technique), is described. Parameters such as the configuration of the base grid, electrode compaction temperature and pressure, binder composition, mixing time, etc. have been optimised using this method. The optimised electrodes have a capacity of 300 plus /minus 5 mA h/g of active material (mixture of Fe and magnetite) at 7 h rate to a cut-off voltage of 8.86V vs. Hg/HgO, OH exp 17 ref.
Resumo:
The steady flow of an incompressible, viscous, electrically conducting fluid between two parallel, infinite, insulated disks rotating with different angular velocities about two noncoincident axes has been investigated; under the application of a uniform magnetic field in the axial direction. The solutions for the symmetric and asymmetric velocities are presented. The interesting feature arising due to the magnetic field is that in the central region the flow attains a uniform rotation with mean angular velocity at all rotation speeds for sufficiently large Hartmann number. In this case the flow adjusts to the rotational velocities of the disks mainly in the boundary layers near the disks. The forces on the disks are found to increase due to the presence of the applied magnetic field.
Resumo:
The structure of time dependent jets in rotating fluids using similarity transformations is studied theoretically for which exact solutions are discussed. Approximate solution using a modified yon Mises transformation is also explored.
Resumo:
The analysis of transient electrical stresses in the insulation of high voltage rotating machines is rendered difficult because of the existence of capacitive and inductive couplings between phases. The Published theories ignore many of the couplings between phases to obtain the solution. A new procedure is proposed here to determine the transient voltage distribution on rotating machine windings. All the significicant capacitive and inductive couplings between different sections in a phase and between different sections in different phases have been considered in this analysis. The experimental results show good correlation with those computed.
Resumo:
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe-type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode,indicating the possibility that corona-generated species play a crucial role in desorption.
Resumo:
In this paper, we look for rotating beams whose eigenpair (frequency and mode-shape) is the same as that of uniform nonrotating beams for a particular mode. It is found that, for any given mode, there exist flexural stiffness functions (FSFs) for which the jth mode eigenpair of a rotating beam, with uniform mass distribution, is identical to that of a corresponding nonrotating uniform beam with the same length and mass distribution. By putting the derived FSF in the finite element analysis of a rotating cantilever beam, the frequencies and mode-shapes of a nonrotating cantilever beam are obtained. For the first mode, a physically feasible equivalent rotating beam exists, but for higher modes, the flexural stiffness has internal singularities. Strategies for addressing the singularities in the FSF for finite element analysis are provided. The proposed functions can be used as test-functions for rotating beam codes and for targeted destiffening of rotating beams.
Resumo:
The flow of an incompressible viscous fluid confined between two parallel infinite disks performing torsional oscillations with the same frequency, but rotating about different axes with different speeds has been studied. The solutions are presented for the symmetric and asymmetric first harmonic and steady streaming. The interesting features of the symmetric and asymmetric flow are discussed for the cases of small and large Womersley parameter at different ratios of the rotation speeds. The forces acting on one of the disks are also calculated.