978 resultados para Rock mass
Resumo:
A Rock Pigeon (Columba livia) submitted for necropsy had an oral white-yellow mass with a friable surface and putrid odor. Impression smears were performed and tissue samples were collected for histopathology. Cytopathological analysis revealed numerous pyriform protozoa, compatible with Trichomonas gallinae. Protozoans were not evident within the lesions by histopathology after staining the samples with Hematoxylin and Eosin or Gomori methenamine silver (GMS) stain. We conclude that impression smears from avian oral trichomoniasis suspects, even during post-mortem evaluation, can be a useful technique for the diagnosis of this disease.
Resumo:
For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks
Resumo:
South Tyrol is a region that has been often affected by various mountain hazards such as floods, flash floods, debris flows, rock falls, and snow avalanches. Furthermore, areas located in lower altitudes are often influenced by high temperatures and heat waves. Climate change is expected to influence the frequency, magnitude, and spatial extent of these natural phenomena. For this reason, local authorities and other stakeholders are in need of tools that can enable them to reduce the risk posed by these processes. In the present study, a variety of methods are applied at local level in different places in South Tyrol that aim at: (1) the assessment of future losses caused by the occurrence of debris flows by using a vulnerability curve, (2) the assessment of social vulnerability based on the risk awareness of the exposed people to floods, and (3) the assessment of spatial exposure and social vulnerability of the exposed population to heat waves. The results show that, in South Tyrol, the risk to a number of hazards can be reduced by: (1) improving documentation for past events in order to improve existing vulnerability curves and the assessment of future losses, (2) raising citizens' awareness and responsibility to improve coping capacity to floods, and (3) extending heat wave early warning systems to more low-lying areas of South Tyrol.
Resumo:
Acid rock drainage (ARD) is a problem of international relevance with substantial environmental and economic implications. Reactive transport modeling has proven a powerful tool for the process-based assessment of metal release and attenuation at ARD sites. Although a variety of models has been used to investigate ARD, a systematic model intercomparison has not been conducted to date. This contribution presents such a model intercomparison involving three synthetic benchmark problems designed to evaluate model results for the most relevant processes at ARD sites. The first benchmark (ARD-B1) focuses on the oxidation of sulfide minerals in an unsaturated tailing impoundment, affected by the ingress of atmospheric oxygen. ARD-B2 extends the first problem to include pH buffering by primary mineral dissolution and secondary mineral precipitation. The third problem (ARD-B3) in addition considers the kinetic and pH-dependent dissolution of silicate minerals under low pH conditions. The set of benchmarks was solved by four reactive transport codes, namely CrunchFlow, Flotran, HP1, and MIN3P. The results comparison focused on spatial profiles of dissolved concentrations, pH and pE, pore gas composition, and mineral assemblages. In addition, results of transient profiles for selected elements and cumulative mass loadings were considered in the intercomparison. Despite substantial differences in model formulations, very good agreement was obtained between the various codes. Residual deviations between the results are analyzed and discussed in terms of their implications for capturing system evolution and long-term mass loading predictions.
Resumo:
Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (similar to 15 mu m) and vertical (similar to 20-200 nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR). Key Words: Biogenicity-Biomarkers-Biosignatures-Filaments-Fossilization. Astrobiology 15, 669-682.
Resumo:
In making the arrangements for the visit of Pope John Paul II to San Antonio, Texas, in September, 1987, it was discovered that no comprehensive documents or guidelines are available in the public sector for planning such an event. It was not clear which, if any, laws applied. The literature describes rock concerts, papal masses, and civil disorders. These events are held in stadia, and in the open. There was little agreement on what services, if any, were needed to protect the public's health and the environment; or if needed, how services should be provided, or by whom.^ A literature review and bibliography are given to provide greater understanding of the variety of mass gatherings and the many factors that impinge on temporary groups while away from their homes. Descriptions of past mass gatherings in terms of personnel ratios are provided. This study develops a conceptual model which delineates some of the known parameters necessary for successfully conducting a mass gathering. A study of one such site is given.^ Provisions for public wellness and freedom from disease at a mass gathering include adequate water (fluids), food, sanitary facilities, security, transportation, and medical services. The determination of adequacy of these provisions is discussed. Methods of determining the use of provided facilities are given. ^
Resumo:
Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.
Resumo:
The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
Resumo:
Total carbon and carbonate contents, quantitative carbonate mineralogy, trace metal concentrations, and stable isotope compositions were determined on a suite of samples from the Miocene sections at Sites 1006 and 1007. The Miocene section at Site 1007, located at the toe-of-slope, contains a relatively high proportion of bank-derived components and becomes fully lithified at a depth of ~300 meters below seafloor (mbsf). By contrast, Miocene sediments at Site 1006, situated in Neogene drift deposits in the Straits of Florida and composed primarily of pelagic carbonates, do not become fully lithified until a depth of ~675 mbsf. Diagenetic and compositional contrasts between Sites 1006 and 1007 are reflected in geochemical data derived from sediment samples from each site.
Resumo:
A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.
Resumo:
At Site 572, located at 1°N, 114° W (3903 m water depth), we recovered a continuous hydraulic piston cored section of upper Miocene to upper Pleistocene pelagic sediments. The sediment is composed of biogenic carbonate and silica with nonbiogenic material as a minor component. Detailed analysis of the calcium carbonate content shows that the degree of variability in carbonate deposition apparently changed markedly between the late Miocene and Pliocene at this equatorial Pacific site. During this interval carbonate mass accumulation rates decreased from 2.6 to 0.8 g/cm**2 per 10**3 yr. If we assume that variations in CaCO3 content reflect changes in the degree of dissolution, then the detailed carbonate analysis would suggest that the degree of variability in carbonate deposition decreases by a factor of 5 as the dominant wavelength of variations increases significantly. However, if the variability in carbonate concentration is described in terms of changes in mean mass accumulation, calculations then suggest that relatively small changes in noncarbonate rates may be important in controlling the observed carbonate records. In addition, the analysis suggests that the degree of variability observed in pelagic carbonate data may in part reflect total accumulation rates. Intervals with high sedimentation rates show lower amplitude variations in concentration than intervals with lower sedimentation rates for the same degree of change in the carbonate accumulation rate.
Resumo:
Southern Ocean sediments reveal a spike in authigenic uranium 127,000 years ago, within the last interglacial, reflecting decreased oxygenation of deep water by Antarctic Bottom Water (AABW). Unlike ice age reductions in AABW, the interglacial stagnation event appears decoupled from open ocean conditions and may have resulted from coastal freshening due to mass loss from the Antarctic ice sheet. AABW reduction coincided with increased North Atlantic Deep Water (NADW) formation, and the subsequent reinvigoration in AABW coincided with reduced NADW formation. Thus, alternation of deep water formation between the Antarctic and the North Atlantic, believed to characterize ice ages, apparently also occurs in warm climates.
Resumo:
Trace element and isotopic signatures of magmatic rock samples from ODP Hole 642E at the Vøring Plateau provide insight into the interaction processes of mantle melt with crust during the initial magma extrusion phases at the onset of the continental breakup. The intermediate (basaltic-andesitic) to felsic (dacitic and rhyolitic) Lower Series magmas at ODP Hole 642E appear to be produced by large amounts of melting of upper crustal material. This study not only makes use of the traditional geochemical tools to investigate crust-mantle interaction, but also explores the value of Cs geochemistry as an additional tool. The element Cs forms the largest lithophile cation, and shows the largest contrast in concentration between (depleted) mantle and continental crust. As such it is a very sensitive indicator of involvement of crustal material. The Cs data reinforce the conclusion drawn from isotopic signatures that the felsic magmas are largely anatectic crustal melts. The down-hole geochemical variation within ODP Hole 642E defines a decreasing continental crustal influence from the Lower Series into the Upper Series. This is essential information to distinguish intrinsic geochemical properties of the mantle melts from signatures imposed by crustal contamination. A comparison with data from the SE Greenland margin highlights the compositional asymmetry of the crust-mantle interactions at both sides of the paleo-Iapetus suture. While Lower Series and Middle Series rocks from the SE Greenland margin have isotopic signatures reflecting interactions with lower and middle crust, such signatures have not been observed at the mid-Norwegian margin. The geochemical data either point to a dissimilar Caledonian crustal composition and/or to different geodynamic pre-breakup rifting history at the two NE Atlantic margin segments.