978 resultados para Robot motion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to building an observation likelihood function from a set of sparse, noisy training observations taken from known locations by a sensor with no obvious geometric model. The basic approach is to fit an interpolant to the training data, representing the expected observation, and to assume additive sensor noise. This paper takes a Bayesian view of the problem, maintaining a posterior over interpolants rather than simply the maximum-likelihood interpolant, giving a measure of uncertainty in the map at any point. This is done using a Gaussian process framework. To validate the approach experimentally, a model of an environment is built using observations from an omni-directional camera. After a model has been built from the training data, a particle filter is used to localise while traversing this environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective quantification of three-dimensional kinematics during different functional and occupational tasks is now more in demand than ever. The introduction of new generation of low-cost passive motion capture systems from a number of manufacturers has made this technology accessible for teaching, clinical practice and in small/medium industry. Despite the attractive nature of these systems, their accuracy remains unproved in independent tests. We assessed static linear accuracy, dynamic linear accuracy and compared gait kinematics from a Vicon MX20 system to a Natural Point OptiTrack system. In all experiments data were sampled simultaneously. We identified both systems perform excellently in linear accuracy tests with absolute errors not exceeding 1%. In gait data there was again strong agreement between the two systems in sagittal and coronal plane kinematics. Transverse plane kinematics differed by up to 3 at the knee and hip, which we attributed to the impact of soft tissue artifact accelerations on the data. We suggest that low-cost systems are comparably accurate to their high-end competitors and offer a platform with accuracy acceptable in research for laboratories with a limited budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of marker placement on palpable surface anatomical landmarks is an important consideration in biomechanics. Although marker placement reliability has been studied in some depth, it remains unclear whether or not the markers are accurately positioned over the intended landmark in order to define the static position and orientation of the segment. A novel method using commonly available X-ray imaging was developed to identify the accuracy of markers placed on the shoe surface by palpating landmarks through the shoe. An anterior–posterior and lateral–medial X-ray was taken on 24 participants with a newly developed marker set applied to both the skin and shoe. The vector magnitude of both skin- and shoe-mounted markers from the anatomical landmark was calculated, as well as the mean marker offset between skin- and shoe-mounted markers. The accuracy of placing markers on the shoe relative to the skin-mounted markers, accounting for shoe thickness, was less than 5mm for all markers studied. Further, when using the developed guidelines provided in this study, the method was deemed reliable (Intra-rater ICCs¼0.50–0.92). In conclusion, the method proposed here can reliably assess marker placement accuracy on the shoe surface relative to chosen anatomical landmarks beneath the skin.