941 resultados para Retinal nerve fiber layer
Resumo:
The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 mu m thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop.
Resumo:
The presence of lingual papillae and the nerve endings in the middle region of the tongue mucosa of collared peccary (Tayassu tajacu) were studied using scanning electron microscopy and light microscopy, based upon the silver impregnation method. The middle region of tongue mucosa revealed numerous filiform and fungiform papillae. The thick epithelial layer showed epithelial cells and a dense connective tissue layer containing nerve fibre bundles and capillaries. The sensory nerve endings, intensely stained by silver impregnation, were usually non-encapsulated and extended into the connective tissue of the filiform and fungiform papillae very close to the epithelial cells. In some regions, the sensory nerves fibres formed a dense and complex network of fine fibrils. The presence of these nerve fibrils may characterize the mechanisms of transmission of sensitive impulses to the tongue mucosa.
Resumo:
We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report here the protein expression of TRPV1 receptor in axotomized rat retinas and its possible participation in mechanisms involved in retinal ganglion cell (RGC) death. Adult rats were subjected to unilateral, intraorbital axotomy of the optic nerve, and the retinal tissue was removed for further processing. TRPV1 total protein expression decreased progressively after optic nerve transection, reaching 66.2% of control values 21 days after axotomy. The number of cells labeled for TRPV1 in the remnant GCL decreased after 21 days post-lesion (to 63%). Fluoro-jade B staining demonstrated that the activation of TRPV1 in acutely-lesioned eyes elicited more intense neuronal degeneration in the GCL and in the inner nuclear layer than in sham-operated retinas. A single intraocular injection of capsazepine (100 mu M), a TRPV1 antagonist, 5 days after optic nerve lesion, decreased the number of GFAP-expressing Muller cells (72.5% of control values) and also decreased protein nitration in the retinal vitreal margin (75.7% of control values), but did not affect lipid peroxidation. Furthermore, retinal explants were treated with capsaicin (100 mu M), and remarkable protein nitration was then present, which was reduced by blockers of the constitutive and inducible nitric oxide synthases (7-NI and aminoguanidine, respectively). TRPV1 activation also increased GFAP expression, which was reverted by both TRPV1 antagonism with capsazepine and by 7-NI and aminoguanidine. Given that Muller cells do not express TRPV1, we suppose that the increased GFAP expression in these cells might be elicited by TRPV1 activation and by its indirect effect upon nitric oxide overproduction and peroxynitrite formation. We incubated Fluorogold pre-labeled retinal explants in the presence of capsazepine (1 mu M) during 48 h. The numbers of surviving RGCs stained with fluorogold and the numbers of apoptotic cells in the GCL detected with TUNEL were similar in lesioned and control retinas. We conclude that TRPV1 receptor expression decreased after optic nerve injury due to death of TRPV1-containing cells. Furthermore, these data indicate that TRPV1 might be involved in intrinsic protein nitration and Muller cell reaction observed after optic nerve injury. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Conclusion. Hyperbaric oxygen treatment (HBOT) promoted an increase of the mean axonal diameter in the group evaluated 2 weeks after lesion induction, which suggests a more advanced regeneration process. However, the number of myelin nerve fibers of the facial nerve of the rabbits was similar when compared to the control and treatment groups, in both evaluation periods. Objective. To evaluate the effect of HBOT on the histological pattern of the facial nerve in rabbits exposed to a nerve crush injury. Materials and methods. Twenty rabbits were exposed to facial nerve crush injury. Ten rabbits received HBOT, 10 rabbits comprised the control group. The rabbits were sacrificed 2 and 4 weeks after the trauma. Qualitative morphological analysis, measurement of the external axonal diameters and myelin fiber count were carried out in an area of 185 000 mu m(2). Results. There was an increase in the area of the axons and thicker myelin in the 2 weeks treatment group in comparison with the control group. The mean diameter of the axons was of 2.34 mu m in the control group and of 2.81 mu m in the HBOT group, with statistically significant differences. The 2 week control group had a mean number of myelin fibers of 186 +/- 5.2664, and the HBOT group had a mean number of 2026.3 +/- 302; this was not statistically significant. The 4 week control group presented a mean of 2495.1 +/- 479 fibers and the HBOT group presented a mean of 2359.9 +/- 473; this was not statistically significant.
Resumo:
Tissue engineering is an important branch of regenerative medicine that uses cells, materials (scaffolds), and suitable biochemical and physicochemical factors to improve or replace specific biological functions. In particular, the control of cell behavior (namely, of cell adhesion, proliferation and differentiation) is a key aspect for the design of successful therapeutical approaches. In this study, poly(lactic-co-glycolic acid) (PLGA) fiber mats were prepared using the electrospinning technology (the fiber diameters were in the micrometer range). Furthermore, the electrospun fiber mats thus formed were functionalized using the layer-by- layer (LbL) technique with chitosan and alginate (natural and biodegradable polyelectrolytes having opposite charges) as a mean for the immobilization of pDNA/dendrimer complexes. The polyelectrolyte multilayer deposition was confirmed by fluorescence spectroscopy using fluorescent-labeled polyelectrolytes. The electrospun fiber mats coated with chitosan and alginate were successfully loaded with complexes of pDNA and poly(amidoamine) (PAMAM) dendrimers (generation 5) and were able of releasing them in a controlled manner along time. In addition, these mats supported the adhesion and proliferation of NIH 3T3 cells and of human mesenchymal stem cells (hMSCs) in their surface. Transfection experiments using a pDNA encoding for luciferase showed the ability of the electrospun fiber mats to efficiently serve as gene delivery systems. When a pDNA encoding for bone morphogenetic protein-2 (BMP-2) was used, the osteoblastic differentiation of hMSCs cultured on the surface of the mats was promoted. Taken together, the results revealed that merging the electrospinning technique with the LbL technique, can be a suitable methodology for the creation of biological active matrices for bone tissue engineering.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Comparar a reinervação muscular com enxerto de nervo em um e dois tempos operatórios, utilizando a neurorrafia término-lateral (NTL) sem lesão do nervo doador. MÉTODOS: Vinte ratos foram distribuídos em quatro grupos. O grupo 1 (G1), um estágio, recebeu o enxerto que foi suturado ao nervo tibial (NT), por meio de NTL, e seu coto livre foi suturado por NTL ao coto distal do nervo peroneal (NP), seccionado a um centímetro do NT, na mesma cirurgia. O grupo 2 (G2), dois estágios, recebeu o enxerto de nervo na primeira cirurgia, como já descrito. Dois meses depois, na segunda cirurgia, o NP foi seccionado e seu coto distal ligado ao coto distal do enxerto como em G1. O grupo controle de normalidade (Gn) recebeu o enxerto da mesma forma, apenas. E o grupo controle de denervação (Gd), além de receber o enxerto, teve o NP seccionado e seus cotos sepultados na musculatura adjacente, com a finalidade de denervar o músculo tibial cranial (MTC), alvo deste estudo. Os parâmetros utilizados para avaliar a reinervação do MTC foram massa muscular, diâmetro mínimo da fibra muscular e área. RESULTADOS: O grupo G2 apresentou superioridade (p<0,0001) em relação ao G1 na massa do MTC, no diâmetro mínimo e na área das fibras musculares. Na comparação entre os quatro grupos, estes mesmos parâmetros tiveram sua expressão máxima em Gn e mínima em Gd, como era esperado. CONCLUSÃO: A reinervação muscular em dois estágios apresenta melhor resultado quando comparada à técnica em um tempo.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Gingival mucosae of man and the adult Cebus apella monkey were fixed for 3 hr in modified Karnovsky fixative containing 2.5% glutaraldehyde, 2% formaldehyde in 0.1 M sodium phosphate buffer (pH=7.4). The specimens were postfixed in 1% osmium tetroxide in 0.1 M sodium phosphate buffer at 4°C for 2 hr, dehydrated in a graded alcohol series and embedded in Epon 812. Thick sections of 1-3 μm and ultrathin sections of 40-80 nm in thickness were cut with glass knives on an LKB ultramicrotome. The thick sections were stained with toluidine blue solution, and the grids were stained with uranyl acetate and lead citrate and examined under a Philips EM-301 electron microscope. Our observations permitted us to conclude that: both gingival mucosae, of man and the Cebus apella monkey, have lamellar nerve endings; these corpuscles are localized in the papillar space of the epithelium and do not contact closely with the basement membrane; the nerve endings are composed of an afferent fiber which subdivides several times and forms irregular flattened or discoidal expansions; the laminae of the lamellar cells are very thin near the terminal axon and are larger and irregular in shape at the peripheral portion of the corpuscle; the terminal axon shows abundant mitochondria, myelin figures, clear vesicles, and multivesicular bodies; between the axoplasm membrane and adjacent cytoplasmic lamina and between the lamellae, small desmosome type junctions are noted; and the cytoplasmic material of the lamellae cells is characterized by the presence of numerous microfilaments, microtubules, mitochondria, rough endoplasmic reticulum, and caveolae.
Resumo:
The myotomal muscle of Synbranchus marmoratus was investigated using histochemical and immunohistochemical reactions. This musculature is composed of a superficial red compartment, uniformly distributed around the trunk circumferentially and also in the lateral line. The red compartment fibers are small in diameter and have an oxidative metabolism, a high rate of glycogen and a negative reaction to alkaline and acid myofibrillar ATPase (mATPase). The white muscle forms the bulk of the muscle mass. Its fibers are large in diameter and have a glycolytic metabolism, a negative reaction to glycogen, a strong reaction to alkaline mATPase and a negative reaction to acid mATPase. Between these two compartments there is an intermediate layer of fibers presenting a mosaic metabolism pattern with a high rate of glycogen. These fibers stained moderately for alkaline and acid m-ATPase. Several clusters of red muscles were observed inside the white muscle. Each cluster is composed of three fiber types, with a predominance of red and intermediate fibers. Reactivity to anti-MHC BA-D5 was positive only in the intermediate fibers. Reactivity to anti-MHC SC-71 was negative in all fiber types.
Resumo:
Aim: Compare the effect of three post designs on the fracture resistance and failure modes of composite core-fiber post-crownless tooth sets. Materials and Methods: Ninety bovine incisors were selected and divided into nine groups of 10 specimens. The teeth were assigned to three groups based on the post design: Cylindrical, tapered, and double-tapered. Each group was subdivided into three subgroups in accordance with the diameter of the post: Small (No.1), medium (No.2), and large (No.3). The Panavia F system was used for post cementation. The specimens were mounted in acrylic resin blocks with a layer of silicone rubber covering the roots. A universal testing machine compressively loaded the specimens from the palatal side at a crosshead speed of 1 mm/min and at an angle of 135I to the long axis of the teeth, until failure occurred. The failure mode was determined by a stereomicroscope inspection of all the specimens. Data were analyzed by one-way ANOVA and the Tukey test (P < 0.05). Results: The fracture resistance was affected by the type of post (P < 0.0001). A narrower diameter for all of the post systems allowed for higher resistance. The main failure mode in the large cylindrical group was catastrophic fractures, while the main failures in the other eight groups were favorable. Conclusion: Narrower diameter posts showed higher fracture resistance. The dominant failure pattern was repairable fracture, except for those with large cylindrical groups.
Resumo:
Background: Cimetidine, histamine H2 receptors antagonist, has caused adverse effects on the male hormones and reproductive tract due to its antiandrogenic effect. In the testes, peritubular myoid cells and muscle vascular cells death has been associated to seminiferous tubules and testicular microvascularization damages, respectively. Either androgen or histamine H2 receptors have been detected in the mucosa and smooth muscular layer of vas deferens. Thus, the effect of cimetidine on this androgen and histamine-dependent muscular duct was morphologically evaluated.Methods: The animals from cimetidine group (CMTG; n=5) received intraperitoneal injections of 100 mg/kg b.w. of cimetidine for 50 days; the control group (CG) received saline solution. The distal portions of vas deferens were fixed in formaldehyde and embedded in paraffin. Massońs trichrome-stained sections were subjected to morphological and the following morphometrical analyzes: epithelial perimeter and area of the smooth muscular layer. TUNEL (Terminal deoxynucleotidyl-transferase mediated dUTP Nick End Labeling) method, NF-kB (nuclear factor kappa B) and AR (androgen receptors) immunohistochemical detection were also carried out. The birefringent collagen of the muscular layer was quantified in picrosirius red-stained sections under polarized light. The muscular layer was also evaluated under Transmission Electron Microscopy (TEM).Results: In CMTG, the mucosa of vas deferens was intensely folded; the epithelial cells showed numerous pyknotic nuclei and the epithelial perimeter and the area of the muscular layer decreased significantly. Numerous TUNEL-labeled nuclei were found either in the epithelial cells, mainly basal cells, or in the smooth muscle cells which also showed typical features of apoptosis under TEM. While an enhanced NF-kB immunoexpression was found in the cytoplasm of muscle cells, a weak AR immunolabeling was detected in these cells. In CMTG, no significant difference was observed in the birefringent collagen content of the muscular layer in comparison to CG.Conclusions: Cimetidine induces significant damages in the epithelium; a possible antiandrogenic effect on the basal cells turnover should be considered. The cimetidine-induced muscle cells apoptosis confirms the susceptibility of these cells to this drug. The parallelism between enhanced cytoplasmic NF-kB immunolabeling in the damaged muscular tissue and muscle cell apoptosis suggests that this drug may avoid the translocation of NF-kB to the nucleus and interfere in the control of NF-kB-mediated smooth muscle cell apoptosis. The decreased immunoexpression of ARs verified in the damaged muscular tissue reinforces this possibility. © 2013 Koshimizu et al.; licensee BioMed Central Ltd.
Resumo:
We performed a quantitative analysis of M and P cell mosaics of the common-marmoset retina. Ganglion cells were labeled retrogradely from optic nerve deposits of Biocytin. The labeling was visualized using horseradish peroxidase (HRP) histochemistry and 3-3'diaminobenzidine as chromogen. M and P cells were morphologically similar to those found in Old- and New-World primates. Measurements were performed on well-stained cells from 4 retinas of different animals. We analyzed separate mosaics for inner and outer M and P cells at increasing distances from the fovea (2.5-9 mm of eccentricity) to estimate cell density, proportion, and dendritic coverage. M cell density decreased towards the retinal periphery in all quadrants. M cell density was higher in the nasal quadrant than in other retinal regions at similar eccentricities, reaching about 740 cells/mm2 at 2.5 mm of temporal eccentricity, and representing 8-14% of all ganglion cells. P cell density increased from peripheral to more central regions, reaching about 5540 cells/mm2 at 2.5 mm of temporal eccentricity. P cells represented a smaller proportion of all ganglion cells in the nasal quadrant than in other quadrants, and their numbers increased towards central retinal regions. The M cell coverage factor ranged from 5 to 12 and the P cell coverage factor ranged from 1 to 3 in the nasal quadrant and from 5 to 12 in the other quadrants. These results show that central and peripheral retinal regions differ in terms of cell class proportions and dendritic coverage, and their properties do not result from simply scaling down cell density. Therefore, differences in functional properties between central and peripheral vision should take these distinct regional retinal characteristics into account.