910 resultados para Response surface method
Resumo:
Soil organic matter (SOM) is important to fertility, since it performs several functions such as cycling, water and nutrient retention and soil aggregation, in addition to being an energy requirement for biological activity. This study proposes new trends to the Embrapa, Walkley-Black, and Mebius methods that allowed the determination of SOM by spectrophotometry, increasing functionality. The mass of 500 mg was reduced to 200 mg, generating a mean of 60 % saving of reagents and a decrease of 91 % in the volume of residue generated for the three methods without compromising accuracy and precision. We were able to optimize conditions for the Mebius method and establish the digestion time of maximum recovery of SOM by factorial design and response surface. The methods were validated by the estimate of figures of merits. Between the methods investigated, the optimized Mebius method was best suited for determining SOM, showing near 100 % recovery.
Resumo:
Experiments were undertaken to study effect of initial conditions on the expansion ratio of two grains in a laboratory scale, single speed, single screw extruder at Naresuan University, Thailand. Jasmine rice and Mung bean were used as the material. Three different initial moisture contents were adjusted for the grains and classified them into three groups according to particle sizes. Mesh sizes used are 12 and 14. Expansion ratio was measured at a constant barrel temperature of 190oC. Response surface methodology was used to obtain optimum conditions between moisture content and particle size of the materials concerned.
Resumo:
To date, research on P-O fit has focused heavily on the effect of P-O fit on individual and organisational outcomes. Few studies have attempted to explain how or why P-O fit leads to these outcomes. Meglino, Ravlin, and Adkins (1989) and Schein (1985) identified several intervening mechanisms for explaining fit-outcome relationships but only few of these explanations have been tested empirically (Cable & Edwards, 2004; Edwards & Cable, 2009; Kalliath, Bluedorn, & Strube, 1999). This thesis investigates role conflict, cognitive style and organisational justice as three potential mediating mechanisms in the relationship between P-O fit (defined as fit between personal and organisational values – value congruence or value fit) and outcomes including job satisfaction, job performance, service performance, affective commitment and continuance commitment. The study operationalised P-O fit using three measures: subjective fit, perceived fit and objective fit. The mediation model of subjective fit was tested using a Mplus analytical technique, while the mediation models of both perceived and objective fit were tested by modeling the difference between two scores (that is, between personal values and organisational values) using a polynomial regression and response surface analysis (Edwards, 1993). A survey of 558 mid-level managers from seven Brunei public sector organisations provided the data. Our results showed that the relationship between P-O fit and outcomes was partially mediated by organisational justice and cognitive style - for all the three measures of fit, while role conflict had no mediating effects. The findings from this research therefore have both theoretical and practical implications. This research contributes to the literature by combining these theoretical explanations for value congruence effects into one integrated model, and by providing evidence on the partial mediating effects of organisational justice and cognitive style. Future research needs to address and investigate other potential mechanisms by which value congruence affects individual and organisational outcomes. In addition, the study is considered to be the first to test these mediating roles for a value fit-outcomes relationship using three different measures of fit in a non-Western context.
Resumo:
Fouling of industrial surfaces by silica and calcium oxalate can be detrimental to a number of process streams. Solution chemistry plays a large roll in the rate and type of scale formed on industrial surfaces. This study is on the kinetics and thermodynamics of SiO2 and calcium oxalate composite formation in solutions containing Mg2+ ions, trans-aconitic acid and sucrose, to mimic factory sugar cane juices. The induction time (ti) of silicic acid polymerization is found to be dependent on the sucrose concentration and SiO2 supersaturation ratio (SS). Generalized kinetic and solubility models are developed for SiO2 and calcium oxalate in binary systems using response surface methodology. The role of sucrose, Mg, trans-aconitic acid, a mixture of Mg and trans-aconitic acid, SiO2 SS ratio and Ca in the formation of com- posites is explained using the solution properties of these species including their ability to form complexes.
Resumo:
Information and communications technologies are a significant component of the healthcare domain, and electronic health records play a major role in it. Therefore, it is important that they are accepted en masse by healthcare professionals. How healthcare professionals perceive the usefulness of electronic health records and their attitudes towards them have been shown to have significant effects on the overall acceptance in many healthcare systems around the world. This paper investigates the role of perceived usefulness and attitude on the intention to use electronic health records by future healthcare professionals using polynomial regression with response surface analysis. Results show that the relationships between these variables are more complex than predicted in prior research. The paper concludes that the properties of the above determinants must be further investigated to clearly understand: (i) their role in predicting the intention to use electronic health records; and (ii) in designing systems that are better adopted by healthcare professionals of the future.
Resumo:
Firm-customer digital connectedness for effective sensing and responding is a strategic imperative for contemporary competitive firms. This research-in-progress paper conceptualizes and operationalizes the firm-customer mobile digital connectedness of a smart-mobile customer. The empirical investigation focuses on mobile app users and the impact of mobile apps on customer expectations. Based on pilot data collected from 127 customers, we tested hypotheses pertaining to firm-customer mobile digital connectedness and customer expectations. Our test analysis using linear and non-linear postulations reveals those customers raise their expectations as they increase their digital interactions with a firm.
Resumo:
The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.
Resumo:
This work explores the potential of Australian native plants as a source of second-generation biodiesel for internal combustion engines application. Biodiesels were evaluated from a number of non-edible oil seeds which are grow naturally in Queensland, Australia. The quality of the produced biodiesels has been investigated by several experimental and numerical methods. The research methodology and numerical model developed in this study can be used for a broad range of biodiesel feedstocks and for the future development of renewable native biodiesel in Australia.
Resumo:
This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.
Resumo:
The use of remote sensing imagery as auxiliary data in forest inventory is based on the correlation between features extracted from the images and the ground truth. The bidirectional reflectance and radial displacement cause variation in image features located in different segments of the image but forest characteristics remaining the same. The variation has so far been diminished by different radiometric corrections. In this study the use of sun azimuth based converted image co-ordinates was examined to supplement auxiliary data extracted from digitised aerial photographs. The method was considered as an alternative for radiometric corrections. Additionally, the usefulness of multi-image interpretation of digitised aerial photographs in regression estimation of forest characteristics was studied. The state owned study area located in Leivonmäki, Central Finland and the study material consisted of five digitised and ortho-rectified colour-infrared (CIR) aerial photographs and field measurements of 388 plots, out of which 194 were relascope (Bitterlich) plots and 194 were concentric circular plots. Both the image data and the field measurements were from the year 1999. When examining the effect of the location of the image point on pixel values and texture features of Finnish forest plots in digitised CIR photographs the clearest differences were found between front-and back-lighted image halves. Inside the image half the differences between different blocks were clearly bigger on the front-lighted half than on the back-lighted half. The strength of the phenomenon varied by forest category. The differences between pixel values extracted from different image blocks were greatest in developed and mature stands and smallest in young stands. The differences between texture features were greatest in developing stands and smallest in young and mature stands. The logarithm of timber volume per hectare and the angular transformation of the proportion of broadleaved trees of the total volume were used as dependent variables in regression models. Five different converted image co-ordinates based trend surfaces were used in models in order to diminish the effect of the bidirectional reflectance. The reference model of total volume, in which the location of the image point had been ignored, resulted in RMSE of 1,268 calculated from test material. The best of the trend surfaces was the complete third order surface, which resulted in RMSE of 1,107. The reference model of the proportion of broadleaved trees resulted in RMSE of 0,4292 and the second order trend surface was the best, resulting in RMSE of 0,4270. The trend surface method is applicable, but it has to be applied by forest category and by variable. The usefulness of multi-image interpretation of digitised aerial photographs was studied by building comparable regression models using either the front-lighted image features, back-lighted image features or both. The two-image model turned out to be slightly better than the one-image models in total volume estimation. The best one-image model resulted in RMSE of 1,098 and the two-image model resulted in RMSE of 1,090. The homologous features did not improve the models of the proportion of broadleaved trees. The overall result gives motivation for further research of multi-image interpretation. The focus may be improving regression estimation and feature selection or examination of stratification used in two-phase sampling inventory techniques. Keywords: forest inventory, digitised aerial photograph, bidirectional reflectance, converted image coordinates, regression estimation, multi-image interpretation, pixel value, texture, trend surface
Resumo:
Using polynomial regression and response surface analysis to examine the non-linearity between variables, this study demonstrates that better analytical nuances are required to investigate the relationships between constructs when the underlying theories suggest non-linearity. By utilising the Theory of Planned Behaviour (TPB), Ettlie’s adoption stages as well as employing data gathered from 162 owners of Small and Medium-sized Enterprises (SMEs), our findings reveal that subjective norms and attitude have differing influences upon behavioural intention in both the evaluation and trial stages of the adoption.
Resumo:
A central composite rotatable experimental design was constructed for a statistical study of the ethylation of benzene in the liquid phase, with aluminum chloride catalyst, in an agitated tank system. The conversion of benzene and ethylene and the yield of monoethyl- and diethylbenzene are characterized by the response surface technique. In the experimental range studied, agitation rate has no significant effect. Catalyst concentration, rate of ethylene Flow, and temperature are the influential factors. The response surfaces may be adequately approximated by planes.
Resumo:
This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.
Resumo:
A robust aeroelastic optimization is performed to minimize helicopter vibration with uncertainties in the design variables. Polynomial response surfaces and space-¯lling experimental designs are used to generate the surrogate model of aeroelastic analysis code. Aeroelastic simulations are performed at the sample inputs generated by Latin hypercube sampling. The response values which does not satisfy the frequency constraints are eliminated from the data for model ¯tting. This step increased the accuracy of response surface models in the feasible design space. It is found that the response surface models are able to capture the robust optimal regions of design space. The optimal designs show a reduction of 10 percent in the objective function comprising six vibratory hub loads and 1.5 to 80 percent reduction for the individual vibratory forces and moments. This study demonstrates that the second-order response surface models with space ¯lling-designs can be a favorable choice for computationally intensive robust aeroelastic optimization.