946 resultados para Regional population dynamics
Resumo:
Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population.
Resumo:
Ad-hoc population dynamics in Krugman’s type core and periphery models adjust population share of a region, based on its real wage rate deviation from national average, at pre-specified speed of population mobility. Whereas speed of population mobility is expected to be different across countries, for geographical, cultural, technological, etc. reasons, one common speed is often applied in theoretical and simulation analysis, due to spatially patchy, and temporally infrequent, availability of sub-national regional data. This article demonstrates how, increasingly available, high definition spatio-temporal remote-sensing data, and their by-products, can be used to measure speed of population mobility in national and sub-national level.
Resumo:
We give reasons why demographic parameters such as survival and reproduction rates are often modelled well in stochastic population simulation using beta distributions. In practice, it is frequently expected that these parameters will be correlated, for example with survival rates for all age classes tending to be high or low in the same year. We therefore discuss a method for producing correlated beta random variables by transforming correlated normal random variables, and show how it can be applied in practice by means of a simple example. We also note how the same approach can be used to produce correlated uniform triangular, and exponential random variables. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Harmless bacteria inhabiting inner plant tissues are termed endophytes. Population fluctuations in the endophytic bacterium Pantoea agglomerans associated with two species of field cultured citrus plants were monitored over a two-year period. The results demonstrated that populations of P. agglomerans fluctuated in Citrus reticulata but not C. sinensis. A cryptic plasmid pPA3.0 (2.9 kb) was identified in 35 out of 44 endophytic isolates of P. agglomerans and was subsequently sequenced. The origins of replication were identified and nine out of 18 open reading frames (ORFs) revealed homology with described proteins. Notably, two ORFs were related to cellular transport systems and plasmid maintenance. Plasmid pPA3.0 was cloned and the gfp gene inserted to generate the pPAGFP vector. The vector was introduced into P. agglomerans isolates and revealed stability was dependent on the isolate genotype, ninety-percent stability values were reached after 60 hours of bacterial cultivation in most evaluated isolates. In order to definitively establish P. agglomerans as an endophyte, the non-transformed bacterium was reintroduced into in vitro cultivated seedlings and the density of inner tissue colonization in inoculated plants was estimated by bacterium re-isolation, while the tissue niches preferred by the bacterium were investigated by scanning electronic microscopy (SEM). Cells from P. agglomerans (strain ARB18) at similar densities were re-isolated from roots, stems and leaves and colonization of parenchyma and xylem tissues were observed. Data suggested that P. agglomerans is a ubiquitous citrus endophyte harboring cryptic plasmids. These characteristics suggest the potential to use the bacterium as a vehicle to introduce new genes in host plants via endophytic bacterial transformation.
Resumo:
Plant communities on pastures adapt to varying frequencies and severities of defoliation through mechanisms capable of ensuring their longevity and photosynthetic efficiency. The objective of this experiment was to evaluate tiller population density, demographic patterns of tillering and population stability of palisadegrass swards subjected to four grazing intensities. Treatments corresponded to four sward steady state conditions (sward heights of 10, 20, 30 and 40 cm) generated by continuous stocking. Measurements of tiller population density and population dynamics were performed at 4 week intervals and the results were used to calculate tiller appearance, death and survival rates. Tiller appearance and death rate were used to calculate sward stability index. The results indicate that keeping swards low (10 cm or lower) may be prejudicial to persistency and productivity of palisadegrass. The results also indicate that a low tiller population alone should not be considered as an indicator of loss of productive potential and of reduced plant persistency, since swards may be stable even with low population of tillers.
Resumo:
Loss of connectivity in impounded rivers is among the impacts imposed by dams, and mitigation measures such as fish passages might not accomplish their purpose of reestablishing an efficient bi-directional gene flow in the fish populations affected. As a consequence, fish populations remain fragmented, and a new interpopulational structure may develop, with increased risk of reduced genetic diversity and stochastic extinction. In order to evaluate the effects of the Gavio Peixoto Dam, which was constructed almost a century ago on the Jacar,-Gua double dagger u River in the Upper Parana River basin, Brazil, a comparative morphometric study was undertaken on the populations of the Neotropical migratory characid fish Salminus hilarii living up- and downstream of this dam. Population dynamics, spatial segregation, and habitat use by different age classes were monitored for 2 years. We found that segregation caused by the dam and long periods with no efficient connection by fish passages have led to fragmentation and interpopulational structuring of S. hilarii, as revealed by canonical variable analysis of morphometric features. The fish populations occupying the up- and downstream sections have succeeded in performing short-distance reproductive migrations in the main river and tributaries, have found suitable habitats for completing their life cycle, and have been able to maintain distinct small-sized populations so far.
Resumo:
The population dynamics of stray dogs is simulated to assess the effects of sterilization and euthanasia. From simulations representing less than 5 years, sterilization is less efficient than euthanasia to reduce the stray dog population, considering similar rates, but the total number of sterilized dogs is less than the total number of euthanized dogs per km(2) per year. Over 20 years, both strategies have similar efficiency. Beyond a certain rate of dog abandonment, both strategies are inefficient.
Resumo:
Since European settlement in Australia, the geographical range of ghost bats (Macroderma gigas) has contracted northwards. Ghost bats are thought to occur in disjunct populations with little interpopulation migration, raising concerns over the current status and future viability of the southernmost colony, which has also been threatened by mining activity. To address these concerns, demographic parameters of the southernmost colony were estimated from a mark-recapture study conducted during 1975-1981. Female bats gave birth to a single young in late spring, but only 40% (22-70%, 95% CI) of females bred in their second year, increasing to 93% (87-97%, 95% CI) for females greater than or equal to 2 years old. Sixty-five percent of juveniles caught were female. Annual adult survival ranged between 0.57-0.77 for females and 0.43-0.66 for males, and was lowest over winter-spring and greatest in autumn-winter. Juvenile survival for the first year ranged between 0.35-0.46 for females and 0.29-0.42 for males. Adult survival varied among seasons, was negatively associated with rainfall, but was not associated with temperature beyond being lower in late winter. Poor survival may result from the inferior daytime roosts that bats must use if water seepage forces them to leave their normal roosts. Although these age-specific rates of fecundity and survival suggested a declining population, mark-recapture estimates of the population trend indicated stability over the study period. Counts at daytime roosts also suggested a population decline, but were considered unreliable because of an increasing tendency of bats to avoid detection. It is therefore likely that some assumptions in estimating survival were violated. These results provide a caution against the uncritical use of population projections derived from mark-recapture estimates of demographic parameters, and the use of untested indices as the basis for conservation decisions.
Resumo:
In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.
Resumo:
Ganoderma boninense (the causal agent of basal stem rot of oil palm in Papua New Guinea) has a tetrapolar mating system with multiple alleles. Investigations into the population structure of G. boninense, using interfertility between isolates as a marker, revealed that the population on oil palm was comprised predominantly of genetically distinct individuals, although a number of isolates were found to share single mating alleles. No direct hereditary relationship was found between isolates on neighbouring or spatially separated diseased palms, indicating that outcrossing had probably occurred over several generations in the founder population prior to colonization of oil palm. In this study, a total of 81 A and 83 B mating type alleles (factors) were detected with 18 allelic repeats at the A locus and 17 at the B locus. Alleles appeared to be randomly dispersed throughout the population in each study block, although there was a significantly (P
Resumo:
The extent to which density-dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density-dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long-term dataset on the distribution of ticks among individual hosts. If density-dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host-parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re-analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density-dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population-scale increase in the aggregation coefficient is indirect evidence of a density-dependent process or processes sufficiently strong to produce a population-wide pattern, and thus also likely to influence population regulation. The direct observation of a density-dependent process is evidence of at least part of the responsible mechanism.
Resumo:
The standard mathematical models in population ecology assume that a population's growth rate is a function of its environment. In this paper we investigate an alternative proposal according to which the rate of change of the growth rate is a function of the environment and of environmental change. We focus on the philosophical issues involved in such a fundamental shift in theoretical assumptions, as well as on the explanations the two theories offer for some of the key data such as cyclic populations. We also discuss the relationship between this move in population ecology and a similar move from first-order to second-order differential equations championed by Galileo and Newton in celestial mechanics.
Resumo:
In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K, C-0) and (K, sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K-c decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.
Resumo:
Jornadas "Ciência nos Açores – que futuro? Tema Ciências Naturais e Ambiente", Ponta Delgada, 7-8 de Junho de 2013.
Resumo:
World Congress of Malacology, Ponta Delgada, July 22-28, 2013.