999 resultados para Rashba spin splitting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decades, universities have increasingly become ambidextrous organizations reconciling scientific and commercial missions. In order to manage this ambidexterity, technology transfer offices (TTOs) were established in most universities. This paper studies a specific, often implemented, but rather understudied type of TTO, namely a hybrid TTO model uniting centralized and decentralized levels. Employing a qualitative research design, we examine how and why the two TTO levels engage in diverse boundary spanning activities to help nascent spin-off companies move through the pre-spin-off process. Our research identifies differences in the types of boundary spanning activities that centralized and decentralized TTOs perform and in the parties they engage with. We find geographical, technological and organizational proximity to be important antecedents of the TTOs’ engagement in external and internal boundary spanning activities. These results have important implications for both academics and practitioners interested in university technology transfer through spin-off creation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three fullerene isoindoline nitroxides N-methyl-3,4-fulleropyrrolidine-2-spiro-5′- (1′,1′,3′,3′-tetramethylisoindolin-2′-yloxyl), (C60-(TMIO)m, and C70-(TMIO)n) were synthesized by the covalent bonding of 5-formyl-1,1,3,3-tetramethyl isoindolin-2-yloxyl to the fullerenes C60 and C70. Significantly, the X-ray photoelectron spectra indicated the characteristic N 1s signals of NO. at 402 eV. The atomic force microscope morphologies showed that the average particle sizes of C60-(TMIO)m and C70-(TMIO)n were 38 and 15 nm. The electrochemical experiments indicated that fullerene bound isoindoline nitroxides retained similar electrochemical properties and redox reaction mechanisms as the parent nitroxides. The electron paramagnetic resonance spectra of the fullerene isoindoline nitroxides all exhibited the hyperfine splittings and characteristic spectra of tetramethyl isoindoline nitroxides, with typical nitroxide g-values and nitrogen isotropic hyperfine coupling constants. Therefore, these fullerene isoindoline nitroxides may be considered as potential candidates for novel biological spin probes using electron paramagnetic resonance spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of a new class of molecules which are hybrids of long-lived tetramethylisoindolinoxyl (TMIO) radicals and the pyrido[1,2-a]benzimidazole (PyrImid) scaffold. These compounds represent a new lead for noncovalently binding nucleic acid probes, as they interact with nucleic acids with previously unreported C (DNA) and C/U (RNA) complementarity, which can be detected by electron paramagnetic resonance (EPR) techniques. They also have promising properties for fluorimetric analysis, as their fluorescent spin-quenched derivatives exhibit a significant Stokes shift

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the alloy disorder potential can be a possible cause for the valley splitting observed in the Si/Si1-xGex heterostructures at high magnetic fields and low electron densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cobalt(II) tris(bipyridyl) complex ion encapsulated in zeolite-Y supercages exhibits a thermally driven interconversion between a low-spin and a high-spin state-a phenomenon not observed for this ion either in solid state or in solution. From a comparative study of the magnetism and optical spectroscopy of the encapsulated and unencapsulated complex ion, supported by molecular modeling, such spin behavior is shown to be intramolecular in origin. In the unencapsulated or free state, the [Co(bipy)(3)](2+) ion exhibits a marked trigonal prismatic distortion, but on encapsulation, the topology of the supercage forces it to adopt a near-octahedral geometry. An analysis using the angular overlap ligand field model with spectroscopically derived parameters shows that the geometry does indeed give rise to a low-spin ground state, and suggests a possible scenario for the spin state interconversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical(1,2) or quantum(3,4) behaviour. Individual atoms, however, are difficult to arrange in regular patterns(1-5). Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment(6,7). Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970–974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C3N4 and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C3N4 can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C3N4 enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C3N4 calculated by the hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C3N4 for water splitting. Our results offer new theoretical insights into this metal-free photocatalyst for water splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-pressure magnetic susceptibility measurements have been carried out on Fe(dipy)2(NCS)2 and Fe(phen)2(NCS)2 in the pressure range 1–10 kbar and tempeature range 80–300 K in order to investigate the factors responsible for the spin-state transitions. The transitions change from first order to second or higher order upon application of pressure. The temperature variation of the susceptibility at different pressures has been analysed quantitatively within the framework of available models. It is shown that the relative magnitudes of the ΔG0 of high-spin and low-spin conversion and the ferromagnetic interaction between high-spin complexes determines the nature of the transition.